<u>Unit 1 – Number 1</u>

Indices, Powers and Roots

- use index notation and index laws for zero, positive and negative powers (M7)
- (M7)
- use index notation and index laws for integer, fractional and negative powers (M8)

Number Systems

- understand the principles of number systems (M6)
- convert numbers from decimal to binary (base 2) and vice versa (M6)

<u>Unit 2 – Algebra 1</u>

Equations

- use systematic trial and improvement to find approximate solutions of equations where there is no simple analytic method for solving them (M6)
- set up and solve two linear simultaneous equations algebraically (M7)
- set up equations and solve problems involving direct proportion, including graphical and algebraic representations (M7)
- set up equations and solve problems involving indirect proportion, including graphical and algebraic representations (M8)
- set up and solve two simultaneous equations, one linear and one non linear (M8)

Expressions and Formulae

- change the subject of a simple formula (M6)
- change the subject of a formula, including cases where a power or root of the subject appears and including cases where the subject appears in more than one term (M7)

Inequalities

- solve linear inequalities in one variable, and represent the solution set on a number line (M6)
- solve linear inequalities in two variables, representing the solution set on a graph (M7)

Indices

- use index laws in algebra for positive powers (M6)
- use index laws in algebra for integer powers (M7)
- use index laws in algebra for integer, fractional and negative powers (M8)

Sequences

- find the nth term of a sequence where the rule is linear (M6)
- find the nth term of non-linear sequences (M7)

Unit 3 – Geometry and Measures 1

Enlargements

- describe and transform 2D shapes using enlargements by a fractional scale factor (M7)
- enlarge 2D shapes using negative scale factors (M8)

Reflections

- describe and transform 2D shapes using reflections in lines parallel to the x or y axes (M6)
- describe and transform 2D shapes using reflections in the line y = +/-x (M7)

Rotations

• describe and transform 2D shapes using rotations about any point (M6)

Translations

• describe and transform 2D shapes using translations, to include using vector notation (M6)

Transformations

- distinguish properties that are preserved under particular transformations (M6)
- describe and transform 2D shapes using combined transformations (M7)

Similarity

- understand the effect of enlargement on perimeter and area of shapes (M6)
- understand and use the effect of enlargement on the volume of solids (M7)
- use the relationship between the ratios of lengths and areas of similar 2D shapes (M7)
- use the relationship between the ratios of lengths, areas and volumes of similar 3D shapes (M8)

Congruence

• understand the term congruent (M6)

Unit 4 - Number 2

Accuracy and Bounds

- use surds and pi in exact calculations (M7)
- interpret, order and calculate with numbers written in standard index form (M7)
- simplify numerical expressions involving surds, including the rationalisation of the denominator of a fraction such as 5/3V2 (M8)

Fractions and Decimals

- distinguish between rational and irrational numbers (M8)
- change a recurring decimal to a fraction (M8)

Growth and Decay

• set up, solve and interpret the answers in growth and decay problems, for example use the formula for compound interest (M8)

<u>Unit 5 – Algebra 2</u>

Co-ordinate Geometry

- recognise and use the equation of a circle, centre the origin and radius r (M8)
- find the equation of a tangent to a circle at a given point on the circle (M8)

Graphs and Gradients

• interpret the gradient at a point on a curve as the instantaneous rate of change (M8)

Using Graphs

- solve two linear simultaneous equations graphically (M6)
- generate points and plot graphs of simple quadratic functions and use these to find approximate solutions for points of intersection with lines of the form y = +/- a only (M6)
- recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions and the reciprocal function y=a/x with x ≠ 0 (M7)
- generate points and plot graphs of simple quadratic functions and use these to find approximate solutions for points of intersection with lines of the form y = mx + c (M7)
- recognise, sketch and interpret graphs of exponential functions y = kx for positive values of k, for example growth and decay rates (M8)
- find the intersection points of the graphs of a linear and quadratic function, knowing that these are the approximate solutions of the corresponding simultaneous equations representing the linear and quadratic functions, which may require algebraic manipu (M8)

M8 Scheme of Work

Unit 6 – Geometry and Measures 2

Angle Properties

• calculate and use the sums of interior and exterior angles of polygons (M6)

Trigonometry

- understand and use the sine and cosine rules (M8)
- calculate the area of a triangle using A=1/2.absinC (M8)
- use Pythagoras' theorem and trigonometry to solve 2D and 3D problems (M8)

Working with Scale Drawings

• use and understand bearings (M6)

Constructions

- use the standard ruler and compass constructions (M6)
- identify the loci of points, including real life problems (M6)

<u> Unit 7 – Handling Data 1</u>

Counting and Listing Outcomes

- systematically list all outcomes for single events and for two successive events (M6)
- use the product rule for counting: if there are m ways of doing one task and for each of these there are n ways of doing another task, then the total number of ways the two tasks can be done is m x n (M7)

Experimental Probability

- understand and use estimates or measures of probability from theoretical models (including equally likely outcomes) or from relative frequency (M6)
- compare experimental data and theoretical probabilities (M6)
- understand that increasing sample size generally leads to better estimates of probability (M6)

Probability Rules

know when to add or multiply two probabilities : if A and B are mutually exclusive, then the probability of A or B occurring is P(A) + P(B), whereas if A and B are independent events, the probability of A and B occurring is P(A) x P(B) (M7)

Probability Problems

• use the most appropriate method when solving complex probability problems (M8)

Probability Tree Diagrams

- use tree diagrams to represent successive events which are independent (M7)
- use tree diagrams to represent successive events that are not independent (M8)