

St. Patrick's High School, Keady Mathematics Department

GCSE Mathematics Practice Booklet

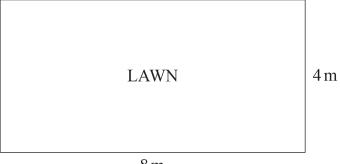
M2

Topic 3 - Geometry and Measure l

Perimeter

Area

Volume


Pythagoras' Theorem

Questions taken from CCEA Past Papers Mark Scheme included at the end of this booklet

Jim, who runs a gardening business, cuts the grass on lawns.

The measurements of one lawn are shown in the diagram below.

 $8\,\mathrm{m}$

Jim charges £2 per square metre for cutting grass.

How much does he charge to cut the grass on the lawn?

Answer £____ [2]

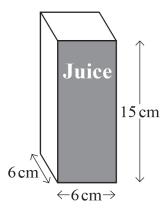
Q2 A building firm needs to put fencing around the perimeter of a rectangular site.

The dimensions of the site are shown in the diagram.

32.4 m

	diagram not drawn accurately
22.8 m	

(a) Calculate the total perimeter of the site.


Answer _____ m [1]

(b) Each section of fencing is 180 cm wide.

How many sections are needed to go around the perimeter of the site?

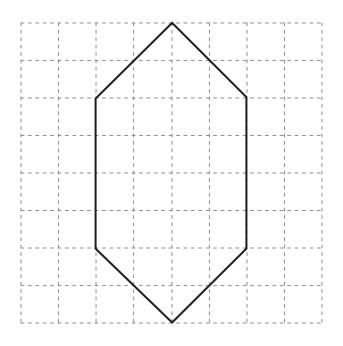
Answer _____ [2]

Q3 A juice carton is in the shape of a cuboid, as shown in the diagram below.

(a) What is the area of the front face of the juice carton?

			Answer	$_\cm^2[1]$
(b)	Calculate the vol	ume of the juice carton.		
			Answer	cm ³ [2]
(c)	John says "The c	arton will hold more that	n half a litre of juice."	
	Is he correct?			
	Explain your ans	wer clearly.		
	Answer	because		
				[1]

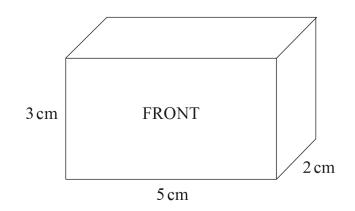
Part of the net of a cuboid is drawn on centimetre squared paper.


One face is missing.

							1	1	1	1	1			
	i I	i I	i I	l I	I I	I I	I I	I I	I I	I I	I I	 	I I	I I
	1	 	 	 	 	 	 	 	 	 	 		 	
		 	r	T I I	r I I	1 I I	1 I I	1 I I	1 I I	1 I I	1 I I	 	1 1 1	
	i i	I	I I	 	I I	I I	I	I	I	I	I	 	I	I
 1	+	+			: I	: I	1	1 I	1 I	1 I	1 – – – – – I	 	1 – – – – – I	1 1
1	1	1		1	1	1		1	1	1	1	1	1	I I
 	+	+		 +	 	 		 	 	 	 	 	 	
I	i i			I	I			I	I	I	I	, 	I	I
ı ⊢ – – – –				1						 	 	 	 	
1		1		1	1	1		1		1	1	1	1	1
 		 		: + = = =	: 					 	 	 = = =	 ======	 ======
		1			 I I	 I				= = = I I	= = = I I			= = = I I
1		1		1	1	I I		1		1	1	1	I I	1
⊢ – – – – !		+ !		+ · !	+ !	+ !		 		 	! !	 	! !	! !
1 		1		1	1 	1 		1 		1 	1 	 	1 	1
		+		+ I	i								!	
I I		l I		1	I I	I I		I I		I I	I I	I	I I	I I
, 		1		1	, , ,			1				, 		, , ,
i L		 		 	 	I		I		i !	i !	 	i !	i !
1	I I	I.		1	1	I I		1	1	1	1	1	1	1
1	1	1		1	1	1		1	1	1	1	1	1	1
L 		L		4 	1 	 		/ 	/ 	/ 	/ 	' 	' 	'
 	i I	i I		1	 	I I		I I	1	I I	I I	- 	I I	I I
L	L	L	1	1	1	1			J))			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1
L	L	L	上 I	4			J		J	!	!	!	!	!
I I	I I	l I	l I	l I	1	1	1	1	1	1	1	1	1	1
। ∟	। ∟	I L	I L	। ⊥	 	 	 	 	ı J	 	/	 	!	
(a) (Compl	lete th	ne net	hv dr	awing	the t	nissir	ng fac	е					
(4)	Jonp			Uy ui	u vv 1112			15 IUC	.					

(b) The net is folded up to make a cuboid.

Work out the volume of the cuboid.

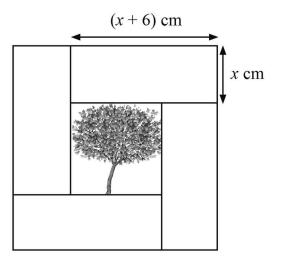

Answer _____ cm³ [3]

(a) Work out the area of the shape.

Answer _____ cm² [1]

(b) Draw all the lines of symmetry on the shape. [1]

(a) What is the area of the front face of the cuboid?

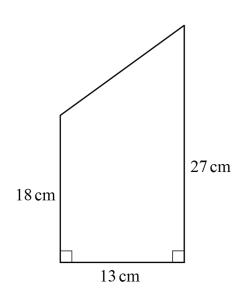

Answer _____ cm² [1]

(b) Work out the volume of the cuboid.

Answer _____ cm³ [2]

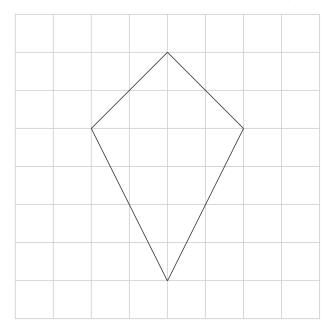
Q7 Four identical rectangular tiles surround a picture as shown in the diagram to form a frame.

The sides of the rectangular tile are x cm and (x + 6) cm.



(a) Find a formula for the perimeter P of the frame in its simplest form.

Answer P = _____ [2]

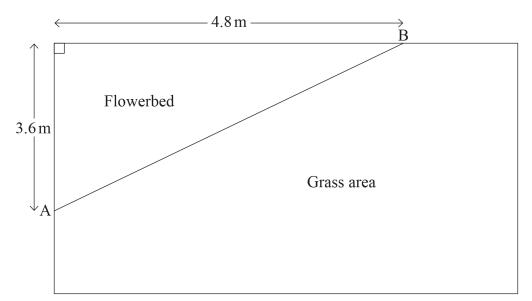

(b) What is the area of the picture?

Answer _____cm² [2]

Answer _____ cm² [2]

Q9 The diagram below shows a kite, drawn on a centimetre squared grid.

(a) Work out the area of the kite.


Answer _____ cm² [1]

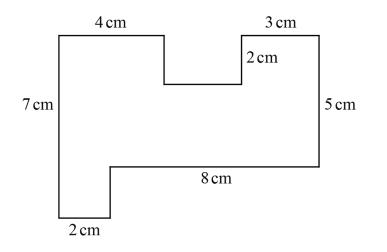
[1]

(b) Draw a line of symmetry on the kite.

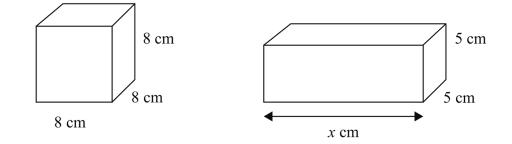
Q10 A garden has a flowerbed in the corner.

A diagram of the garden is shown below.

(a) Calculate the area of the flowerbed.


Answer _____ m² [2]

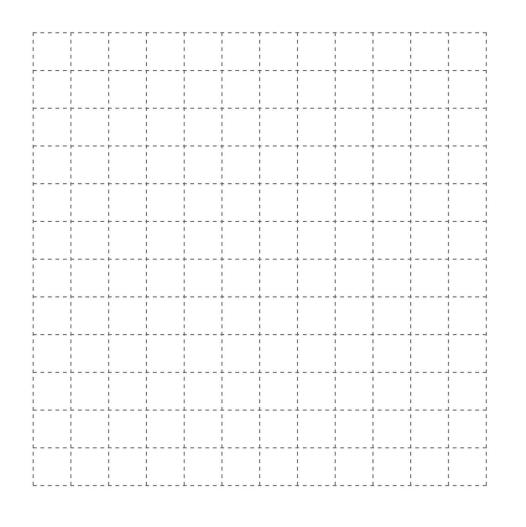
(b) There is a fence along the line AB separating the flowerbed from the grass area.


How long is the fence?

Answer _____ m [3]

diagram not drawn to scale

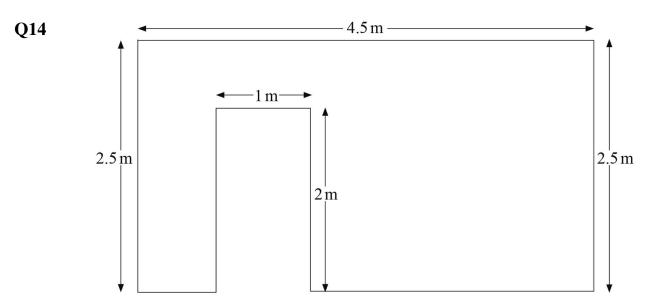
Answer _____ cm² [3]



The surface area of a cube of side length 8 cm is the same as the surface area of the cuboid shown.

Find the value of the side marked $x \,\mathrm{cm}$.

Answer _____ cm [4]

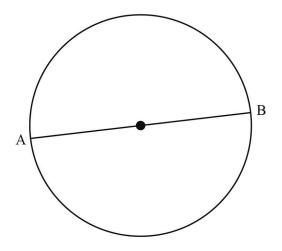

(a) On the grid below draw a rectangle with an area of 24 cm² Each small square is 1 cm²

(b) Lisa drew a rectangle with an area of 24 cm² and a perimeter of 22 cm. What are the dimensions of Lisa's rectangle?

Answer length = _____ cm; breadth = _____ cm [1]

[2]

The diagram above represents a wall with an open entrance.

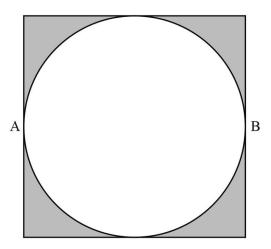

All the lines are either horizontal or vertical.

(a) Work out the perimeter.

Answer _____ m [1]

(b) Work out the area.

Answer _____ m² [2]



(a) AB is a diameter of the circle. AB is 13 cm.

Calculate the area of the circle.

Answer _____ [3]

(b) This circle is now set inside a square as shown. Find the shaded area.

Answer _____ [2]

Q16 (a) Calculate the circumference of a circle with diameter 2 m.

Answer _____ m [2]

(b) Hence calculate the perimeter of the window below, which is made up of a semicircle and a rectangle.

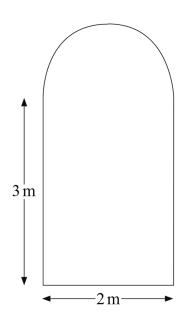
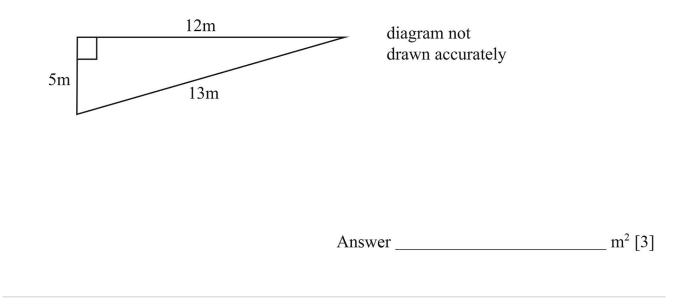
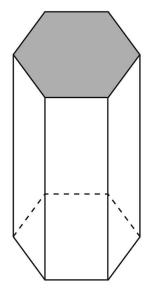
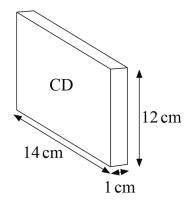
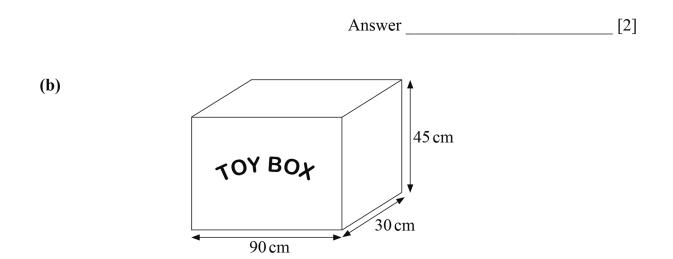




diagram not drawn accurately

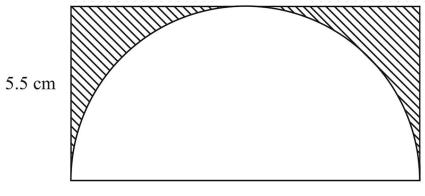
Answer _____ m [2]


Q18 A pillar is in the shape of a hexagonal prism as shown below.

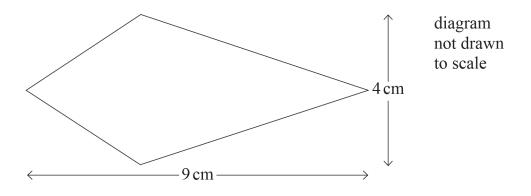


The area of the shaded cross section is 960 cm^2 The height of the pillar is 1.2 m. Calculate the volume of the pillar.

Answer _____ [3]


Q19 (a) Calculate the volume of this CD case.

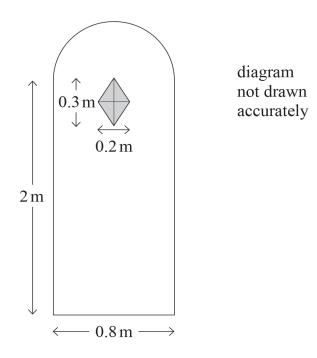
Calculate the total surface area of the **vertical** sides of this toy box, as shown.


Answer _____ cm² [2]

11 cm

Work out the area of the shaded region.

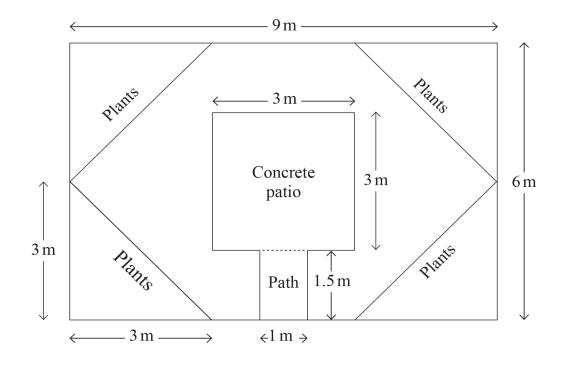
Answer _____ cm² [3]



Answer _____ cm² [2]

Q22 The front door of Martin's house is wooden.

The top of the door is a semicircle.


It has a window in the shape of a rhombus as shown in the diagram.

What is the area of the wooden part of the door?

Answer _____ m² [5]

Q23 The diagram shows the layout of a rectangular garden.

There are four identical triangular sections of the garden covered with plants.

Calculate the area of one of these triangular sections.

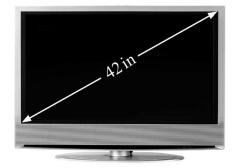
You must include units with your answer.

Answer [3]

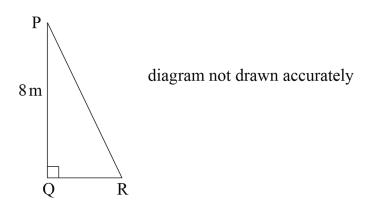
The garden also has a rectangular path leading to a square concrete patio.

The remainder of the garden is covered by grass.

Calculate the total area of grass in the garden.


Answer _____ m² [3]

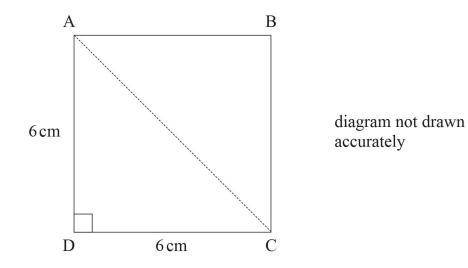
Q24 The size of a television is given as the length of the diagonal of the screen.


This television has a size of 42 inches.

The height of the screen is 20.4 inches.

What is the width of the screen?

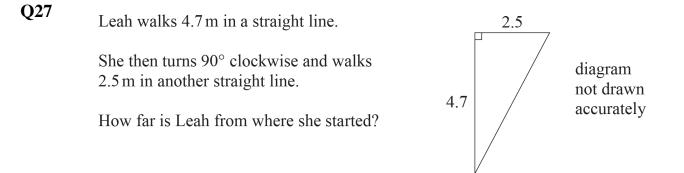
Answer _____ inches [3]



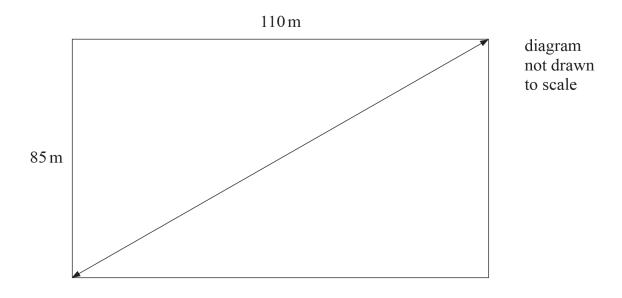
Calculate the length of PR.

Show all your working.

Answer _____ m [4]


Q26 ABCD is a square of side 6 cm.

How much longer is AC than AD?


You must show all your working.

Answer _____ cm [4]

Answer _____ m [3]

A sports referee trains by running diagonally across a rectangular pitch, as shown in the diagram below.

The referee wants to run a distance of **at least** 1 km.

How many diagonal runs are needed?

Answer [5]

1.
$$8 \times 4 = 32 \text{ (m}^2$$
) MA1
£64 A1

2.	(a)	110.4	A1
	(b)	$110.4 \div 1.8 = 61.333$	MA1
		62	A1
		Alternative solution	
		$32.4 \div 1.8 = 18, 22.8 \div 1.8 = 12.67$ need 13	MA1
		18 + 18 + 13 + 13 = 62	MA1

3.	(a)	90	A1
	(b)	$ \begin{array}{c} 6 \times 6 \times 15 \\ 540 \end{array} $	MA1 A1
	(c)	Yes because half a litre is 500ml/cm ³ which is less than 540	A1

4. (a)	Correct face drawn (rectangle 4 across and 5 down attached to right-hand edge)	A1	
(b)	Evidence of 5, 2 and 4 5 × 2 × 4 40	MA1 MA1 A1	

(a)	24	A1

(b) 2 correct lines drawn (vertical and horizontal lines through middle of shape)A1

6.	(a) 15	A1
	(b) $5 \times 2 \times 3$ 30	M1 A1

(a) $4(x+6) + 4x = 8x + 24$	M1 A1
(b) $6 \times 6 = 36$	M1 A1
$\frac{1}{2}(18+27) \times 13$ 292.5	M1 A1
(a) 12(b) correct vertical line drawn	A1 A1
(a) $(3.6 \times 4.8) \div 2$	M1
(b) $3.6^2 + 4.8^2$ 36 6	A1 MA1 M1 A1
	(b) $6 \times 6 = 36$ $\frac{1}{2}(18 + 27) \times 13$ 292.5 (a) 12 (b) correct vertical line drawn (a) $(3.6 \times 4.8) \div 2$ 8.64 (b) $3.6^2 + 4.8^2$ 36

11.	Identifying unknown lengths – horizontal 3 and vertical 2 $(10 \times 7) - (3 \times 2) - (8 \times 2)$ = 48	A1 MA1 A1	
	Alternatively Identifying unknown lengths – horizontal 3 and vertical 2 $(2 \times 4) + (2 \times 3) + (2 \times 2) + (10 \times 3)$ = 48	A1 MA1 A1	
12.	Surface area of cube = $64 \times 6 = 384$	MA1	

Surface area of cuboid = $20x + 50$	MA1
20x + 50 = 384 $20x = 334$	MA1
x = 16.7 cm	A1

13.	(a)	$12 \times 2, 8 \times 3, 6 \times 4$ any listed rectangle	MA2
	(b)	8 cm; 3 cm	A1

14.	(a)	18	A1
	(b)	$(4.5 \times 2.5) - (2 \times 1)$ 11.25 - 2 = 9.25	M1 A1

15. (a)	Radius = 6.5 cm Area = $\pi \times 6.5^2$ = 132.7(32) cm ²	MA1 A1, A1 (units)
(b)	Area of square = $13^2 = 169$ Area between square and circle = $169 - 132.7 = 36.3$ Do not penalise for units in (b)	MA1 A1

$\pi \times 2$	MA1
6.2(83185307)	A1
3.14 + 3 + 2 + 3	MA1
11.14(1592654)	A1
	6.2(83185307) 3.14 + 3 + 2 + 3

17. $\frac{1}{2} \times 5 \times 12$ 30

M1	A1
	A1

18.	960 × 120	or	0.096 × 1.2	M1
	$115200{\rm cm}^3$		$0.1152{ m m}^3$	A1 A1 units

(an attempt to multiply 960 by 1.2 gains first mark only and no units mark)

19.	(a) $14 \times 12 \times 1 = 168 \mathrm{cm}^3$	MA1 A1 (units)
	(b) $2(90 \times 45) + 2(30 \times 45) = 10800$	M1 A1
_		
20.		
20.	$\pi \times 5.5^2 = 95.033$ or 60.5	MA1
	$\frac{1}{2} \times \pi \times 5.5^2 = 47.5166$	MA1
	60.5 - 47.5166 = 12.98	MA1

21.		
	$0.5 \times 9 \times 4$	MA1
	18	A1

MA1
MA2
MA1
A1

23.	(a) $(3 \times 3) \div 2$	MA1
	4.5	A1
	m ²	A1
	(b) $3 \times 3 = 9, 1.5 \times 1 = 1.5$	MA1
	$(9 \times 6 = 54), 54 - (4 \times 4.5) - 9 - 1.5$	MA1
	25.5	A1

24.	$w^2 + 20.4^2 = 42^2$ or $w^2 = 42^2 - 20.4^2$	MA1
	$w^2 = 1347.84$	A1
	w = 36.7 (129405)	A1

25.	$\frac{1}{2} \times base \times 8 = 24$ base = 6	MA1
	$PR = 6^2 + 8^2$	M1
	PR = 100	A1
	$PR = \sqrt{100} = 10$	MA1

26.	$AC^2 = 6^2 + 6^2$	MA1
	$AC^2 = 72$	
	$AC = \sqrt{72}$	MA1
	AC = 8.485	A1
	$8.49 - 6 = 2.49 \mathrm{cm}$	MA1

$x^2 = 4.7^2 + 2.5^2$	M1 A1
x = 5.32(3532662)	Al

28.

$85^2 + 110^2$	M1
$\sqrt{19325}$	MA1
139.014	A1
$1000 \div 139.014 = 7.193$	MA1
8	A1