

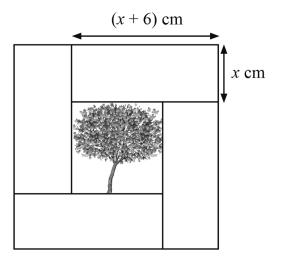
St. Patrick's High School, Keady Mathematics Department

GCSE Mathematics Practice Booklet

M3

Topic 3 -Geometry and Measures l

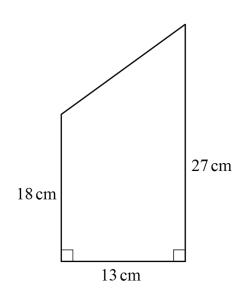
Perimeter, Area & Volume Pythagoras' Theorem Trigonometry


Questions taken from CCEA Past Papers Mark Scheme included at the end of this booklet

St. Patrick's High School, Keady

Q1 Four identical rectangular tiles surround a picture as shown in the diagram to form a frame.

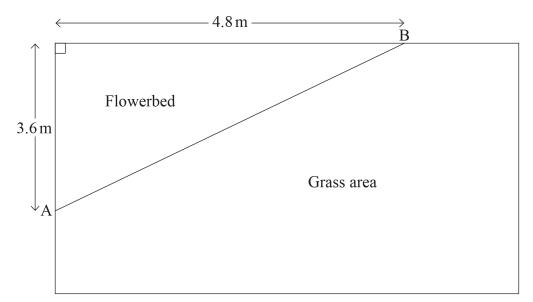
The sides of the rectangular tile are x cm and (x + 6) cm.



(a) Find a formula for the perimeter P of the frame in its simplest form.

Answer P = _____ [2]

(b) What is the area of the picture?

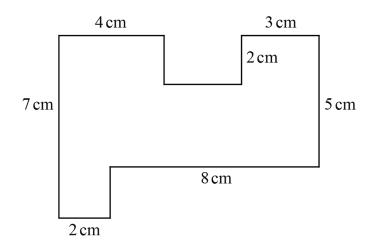

Answer _____cm² [2]

Answer _____ cm² [2]

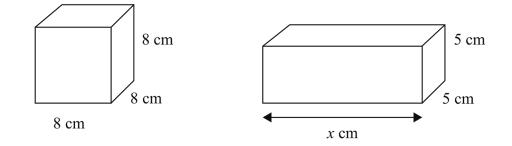
Q3 A garden has a flowerbed in the corner.

A diagram of the garden is shown below.

(a) Calculate the area of the flowerbed.

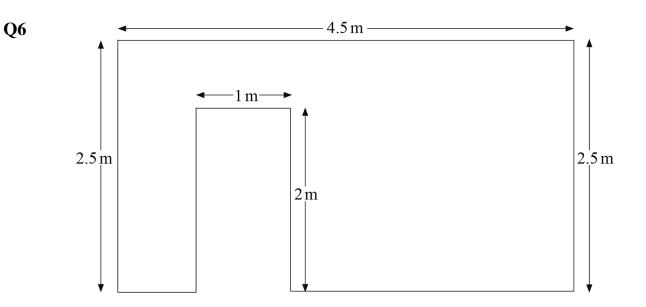

Answer _____ m² [2]

(b) There is a fence along the line AB separating the flowerbed from the grass area.


How long is the fence?

Answer _____ m [3]

diagram not drawn to scale

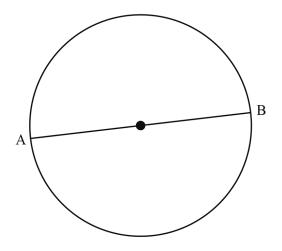

Answer _____ cm² [3]

The surface area of a cube of side length 8 cm is the same as the surface area of the cuboid shown.

Find the value of the side marked x cm.

Answer _____ cm [4]

The diagram above represents a wall with an open entrance.

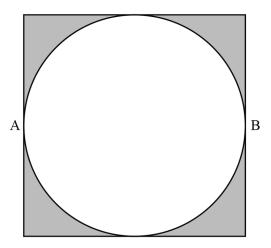

All the lines are either horizontal or vertical.

(a) Work out the perimeter.

Answer _____ m [1]

(b) Work out the area.

Answer _____ m² [2]



(a) AB is a diameter of the circle. AB is 13 cm.

Calculate the area of the circle.

Answer _____ [3]

(b) This circle is now set inside a square as shown. Find the shaded area.

Answer _____ [2]

Q8 (a) Calculate the circumference of a circle with diameter 2 m.

Answer _____ m [2]

(b) Hence calculate the perimeter of the window below, which is made up of a semicircle and a rectangle.

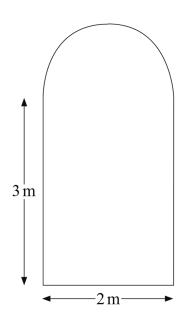
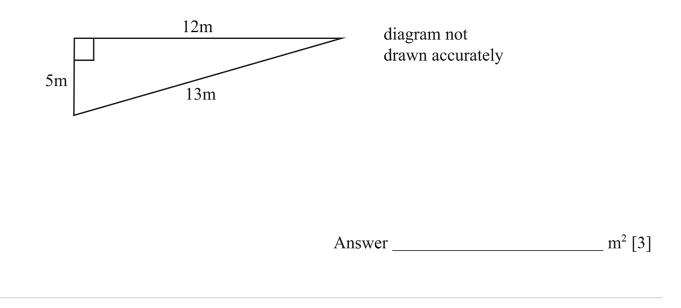
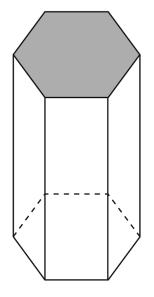
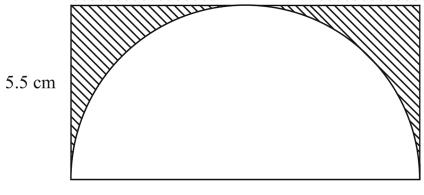




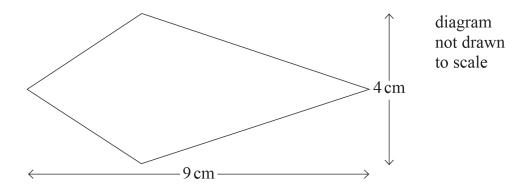
diagram not drawn accurately

Answer _____ m [2]



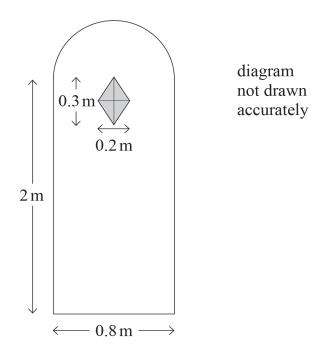
Q10 A pillar is in the shape of a hexagonal prism as shown below.

The area of the shaded cross section is 960 cm^2 The height of the pillar is 1.2 m. Calculate the volume of the pillar.


Answer _____ [3]

Work out the area of the shaded region.

Answer _____ cm² [3]



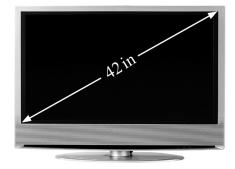
Answer _____ cm² [2]

Q13 The front door of Martin's house is wooden.

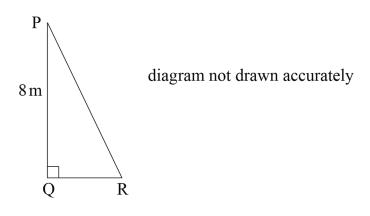
The top of the door is a semicircle.

It has a window in the shape of a rhombus as shown in the diagram.

What is the area of the wooden part of the door?


Answer _____ m² [5]

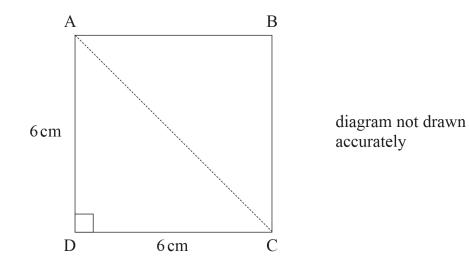
Q14 The size of a television is given as the length of the diagonal of the screen.


This television has a size of 42 inches.

The height of the screen is 20.4 inches.

What is the width of the screen?

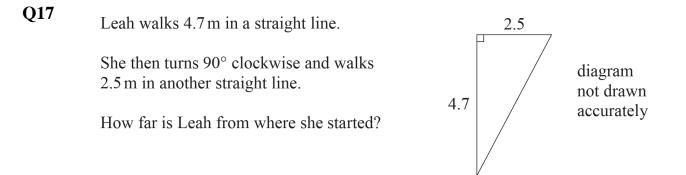
Answer _____ inches [3]



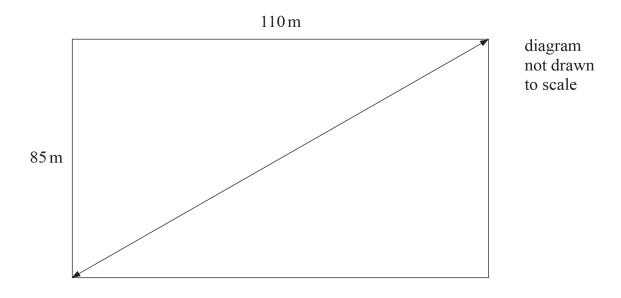
Calculate the length of PR.

Show all your working.

Answer _____ m [4]

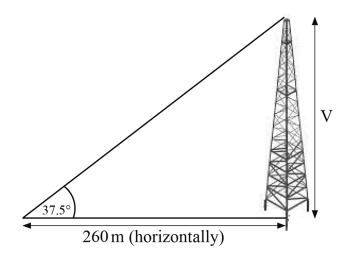

Q16 ABCD is a square of side 6 cm.

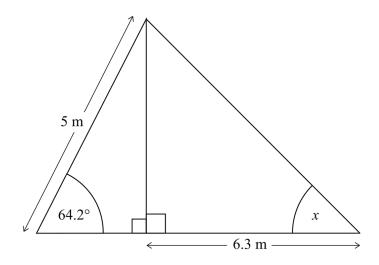
How much longer is AC than AD?


You must show all your working.

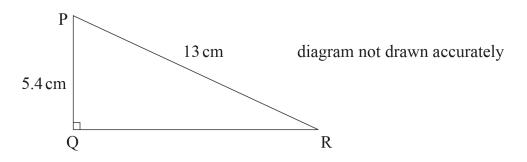
Answer _____ cm [4]

Answer _____ m [3]


A sports referee trains by running diagonally across a rectangular pitch, as shown in the diagram below.


The referee wants to run a distance of **at least** 1 km.

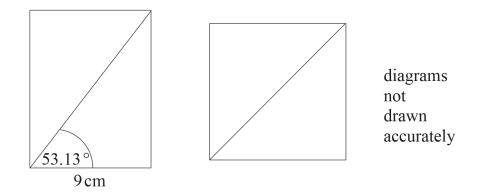
How many diagonal runs are needed?


Answer [5]

Answer _____ m [3]

Answer x =_____° [6]

By how many degrees is angle P bigger than angle R?


Give your answer to the nearest degree.

Show all your working clearly.

Answer ______ ° [5]

A rectangle and a square have the same length of diagonal.

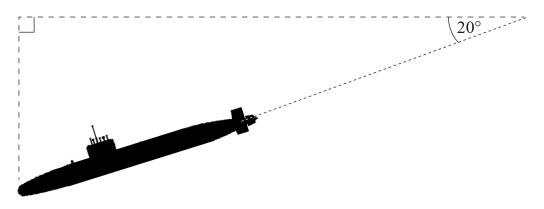
Q22

Calculate the length of the side of the square.

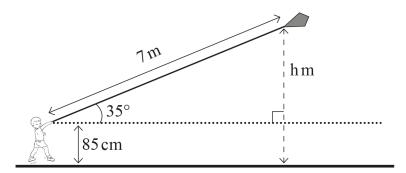
Give your answer correct to 1 decimal place.

Answer _____ cm [6]

Q23 After take-off, an aircraft flies for 16 km at an angle of 24° to the horizontal.

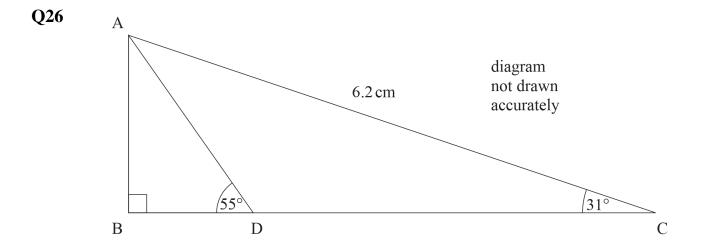


Calculate the height it reaches.


Answer _____ km [3]

Q24 A submarine makes a diving angle of 20° below the horizontal as shown. It travels at a constant speed of 12 m/s.

Work out how deep the front end of the submarine is after one minute.



Answer _____ m [4]

Calculate h, the height of the kite above the ground.

Answer _____ m [4]

ABC is a right-angled triangle with angle $BCA = 31^{\circ}$

 $AC = 6.2 \, cm$

D is a point on the line BC such that angle $ADB = 55^{\circ}$

Calculate the length of the line BD.

Give your answer to 3 significant figures.

Answer _____ cm [4]

1.	(a) $4(x+6) + 4x = 8x + 24$	M1 A1
	(b) $6 \times 6 = 36$	M1 A1
-		
2.	$\frac{1}{2}(18+27) \times 13$ 292.5	M1 A1
3.	(a) $(3.6 \times 4.8) \div 2$	M1
	8.64	A1
	(b) $3.6^2 + 4.8^2$	MA1
	36	M1
	6	A1

Identifying unknown lengths – horizontal 3 and vertical 2	A1
$(10 \times 7) - (3 \times 2) - (8 \times 2)$	MA1
= 48	A1
Alternatively	
Identifying unknown lengths – horizontal 3 and vertical 2	A1
$(2 \times 4) + (2 \times 3) + (2 \times 2) + (10 \times 3)$	MA1
= 48	A1

Surface area of cube = $64 \times 6 = 384$	MA1
Surface area of cuboid = $20x + 50$	MA1
20x + 50 = 384 $20x = 334$	MA1
x = 16.7 cm	A1

6.	(a) 18	A1
	(b) $(4.5 \times 2.5) - (2 \times 1)$ 11.25 - 2 = 9.25	M1 A1

7. (a)	Radius = 6.5 cm Area = $\pi \times 6.5^2$ = 132.7(32) cm ²	MA1 A1, A1 (units)
(b)	Area of square = $13^2 = 169$ Area between square and circle = $169 - 132.7 = 36.3$ Do not penalise for units in (b)	MA1 A1

8.

A1
A1
A1
A1

9.	$\frac{1}{2} \times 5 \times 12$	
	30	

M1	A1
	A1

10.	960 × 120	or	0.096 × 1.2	M1
	$115200{\rm cm}^{3}$		$0.1152{ m m}^3$	A1 A1 units

(an attempt to multiply 960 by 1.2 gains first mark only and no units mark)

11.	$\pi \times 5.5^2 = 95.033$ or 60.5	MA1
	$\frac{1}{2} \times \pi \times 5.5^2 = 47.5166$	MA1
	60.5 - 47.5166 = 12.98	MA1

12.		
	0.5 imes 9 imes 4	MA1
	18	A1

Area = 2×0.8	MA1
$+\frac{1}{2} imes \pi imes 0.4^2$	MA2
$-\frac{1}{2} \times 0.2 \times 0.3$	MA1
= 1.82(1327412)	A1

14.	$w^2 + 20.4^2 = 42^2$ or $w^2 = 42^2 - 20.4^2$	MA1
	$w^2 = 1347.84$	A1
	w = 36.7 (129405)	A1

15.	$\frac{1}{2} \times base \times 8 = 24$ base = 6	MA1
	$PR = 6^2 + 8^2$	M1
	PR = 100	A1
	$PR = \sqrt{100} = 10$	MA1

16.	$AC^2 = 6^2 + 6^2$	MA1
	$AC^2 = 72$	
	$AC = \sqrt{72}$	MA1
	AC = 8.485	A1
	$8.49 - 6 = 2.49 \mathrm{cm}$	MA1

17.	$x^2 = 4.7^2 + 2.5^2$	M1 A1	
	x = 5.32(3532662)	A1	

$85^2 + 110^2$	M1
$\sqrt{19325}$	MA1
139.014	A1
$1000 \div 139.014 = 7.193$	MA1
8	A1

 19.
 $Tan(37.5 = \frac{V}{260})$ MA1

 260 tan 37.5 = V
 MA1

 199.5 (050169)
 A1

20.

$\sin 64.2 = h/5$	MA1
$h = 5 \sin 64.2$	A1
$h = 4.50159 \dots$	A1
$\tan x = 4.50159 \dots / 6.3$	M1A1
x = 35.547	A1

21.	$\cos P = \frac{5.4}{13}$	M1 A1
	P = 65.45646012	A1
	R = 24.54353988	A1
	41°	A1
	alternative solution	
	$\sin R = \frac{5.4}{13}$	M1 A1
	R = 24.54353988	A1
	P = 65.45646012	A1
	41°	A1

22.	$\cos \text{ identified} \\ \cos 53.13 = \frac{9}{x}$	A1 Part of both solutions MA1
	x = 14.99996427 (15)	A1
	$x^2 + x^2 = 225$	MA1
	$x^2 = 112.5$	either 3 here $\begin{cases} MA1 \\ MA1 \\ MA1 \end{cases}$
	<i>x</i> = 10.6	MA1
	alternative solution	
	$\cos 45 = \frac{x}{15}$	MA1
	$x = 15 \cos 45$	or 3 here $\begin{cases} MA1 \\ MA1 \\ MA1 \end{cases}$
	= 10.6	MA1

23.	$\sin 24 = \frac{x}{16}$	

х	=	6.	5	km
---	---	----	---	----

A1

24.

MA1
MA1
MA1
A1

25.

$\sin 35 = \frac{x}{7}$	MA1
$x = 7 \sin 35$	M1
= 4.015(035054)	A1
4.015 + 0.85 = 4.865	MA1

$\sin 31 = \frac{AB}{6.2}$	MA1
AB = 3.19(3236064)	A1
$\tan 55 = \frac{3.19(3236064)}{BD}$ $BD = 2.24$	MA1 A1