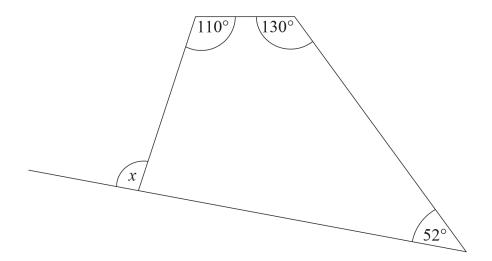


St. Patrick's High School, Keady Mathematics Department

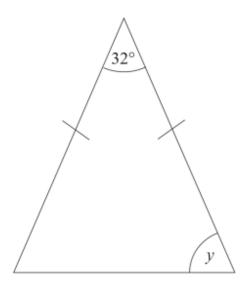
GCSE Mathematics Practice Booklet

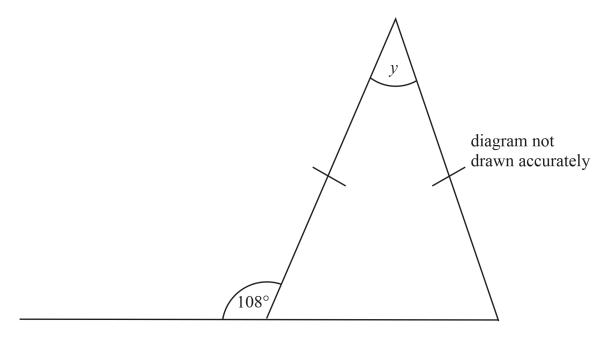
M3


<u>Topic 5 – Geometry and Measures 2</u>

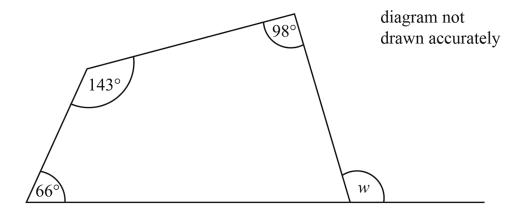
Angles

Questions taken from CCEA Past Papers


Mark Scheme included at the end of this booklet

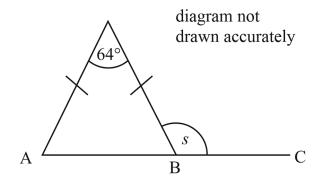

Answer _____° [3]

(b) Work out the size of the angle y in the diagram below.



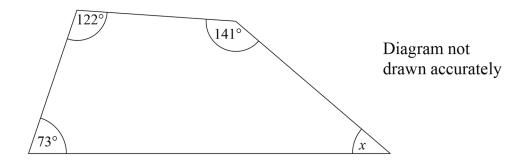
Answer _____° [2]

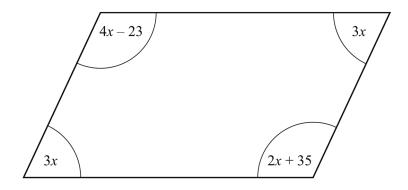
Work out the size of angle *y* in the diagram below.



Answer $y = \underline{\hspace{1cm}}^{\circ} [3]$

Answer w =____ $^{\circ}$ [3]


Q4 The triangle shown is isosceles. ABC is a straight line.

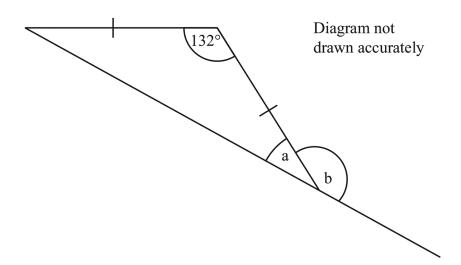

Work out the size of the angle s.

	0	
Answer $s =$	O	[3]

Q5 Calculate the size of angle x in this quadrilateral.



Answer x =____ \circ [2]


The diagram above is a parallelogram. The sizes of the angles in degrees are 3x, 4x - 23, 3x and 2x + 35 Work out the value of x.

Answer $x = $ [3

Find the size of angle

- (a) A Answer _____° [1]
- (b) B Answer _____° [1]

Find the size of

(a) angle a

Answer
$$a = \underline{\hspace{1cm}}^{\circ} [2]$$

(b) angle b

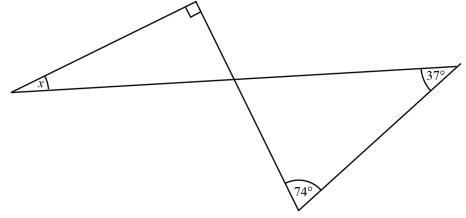
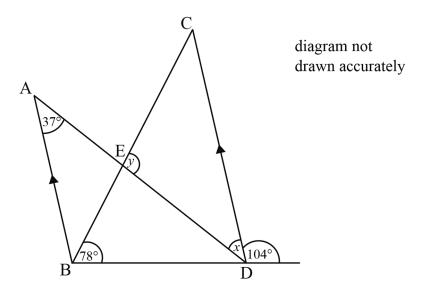
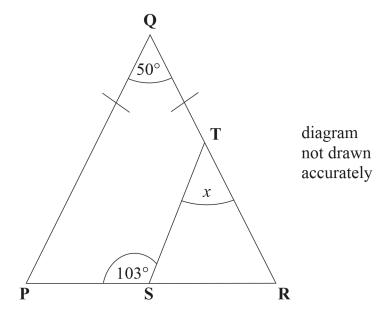



diagram not drawn accurately

Calculate the size of the angle marked x.

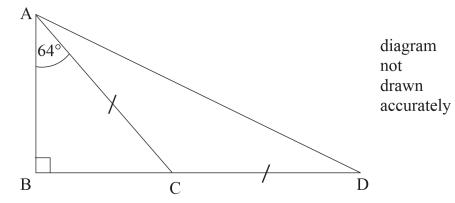
Answer °	[3]
----------	-----



(a) Find the size of the angle x.

Answer ______ [1]

(b) Calculate the size of the angle y.


Answer _______ [2]

Triangle PQR is isosceles with PQ = QR.

(a) Calculate the size of angle x

	Answer	° [3]
b) Hence decide if the lines PQ and ST are	e parallel.	
because		
		[2]

ABC is a right-angled triangle. ACD is an isosceles triangle. BCD is a straight line.

Calculate the size of

(a) angle ACB,

Answer		0	[2]
--------	--	---	-----

(b) angle ADC.

Answer _____ ° [3]

diagram not drawn accurately

PR and TV are parallel lines.

Calculate the size of angle x.

Answer _____° [3]

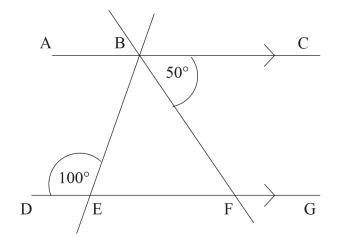


diagram not drawn accurately

AC and DG are parallel lines.

Angle CBF = 50° and angle BED = 100°

What type of triangle is BEF?

Give a reason for each angle found.

Answer	[3]

1.

(a)
$$360 - (110 + 130 + 52)$$

MA1

68

MA1

112

A1

(b)
$$(180 - 32) \div 2$$

MA1

74

A1

2.

$$180 - 108 = 72$$

MA1

$$180 - (72 \times 2)$$

MA1

36

A1

MA1 A1

MA1

M1

A1

MA1

6.
$$4x-23 = 2x + 35$$
 or $3x + 4x - 23 + 3x + 2x + 35 = 360$ M1 $2x = 58$ or $12x = 348$ MA1 $x = 29$ MA1

or

$$4x - 23 + 3x = 180$$
 or $2x + 35 + 3x = 180$ M1
 $7x = 203$ or $5x = 145$ MA1
 $x = 29$ $x = 29$ MA1

7. **(a)** 78° A1 **(b)** 87°

8. **(a)**
$$180 - 132 = 48$$
 $48 \div 2$

24

A1

M1

(b)
$$180 - (a) = 156$$

MA1

9.
$$180 - (74 + 37) = 69$$

MA1

vertically opposite angle = 69

A1

$$x = 180 - (90 + 69) = 21$$

MA1

10.

(a) 37°

A1

(b) ABE = $104 - 78 = 26^{\circ}$

 $AEB = 180 - (26 + 37) = 117^{\circ} = y$

MA1

MA1

or

$$EDB = 180 - (104 + 37) = 39^{\circ}$$

$$BED = 180 - (78 + 39) = 63^{\circ}$$

MA1

$$y = 180 - 63 = 117^{\circ}$$

MA1

or

$$BDC = 76^{\circ}$$

$$BCD = 180 - (76 + 78) = 26^{\circ}$$

MA1

$$y = 180 - (26 + 37) = 117^{\circ}$$

MA1

11. (a) QPR = QRS = 65° (mark gained for angle QRS as 65 in diagram) MA1 TSR = 77° (may be marked in diagram) MA1 $x = 180 - (77 + 65) = 38^{\circ}$ (3 marks for correct ans) MA1

(b) No because $50 + 142 \neq 180^{\circ}$

or because $65 + 103 \neq 180^{\circ}$

 \mathbf{or} because the angles between the two lines do not add up to 180 so not parallel

or because $38 \neq 50$, corresponding.

Allow A1 for numerical error but correct argument

A2

12.

(a)
$$180 - 90 - 64$$
 or $90 - 64$
= 26

M1 A1

(b) 180 - 26 = 154

MA1

$$\frac{180 - 154}{2}$$

M1

= 13

A1

13. QSP = 110

MA1

TUP = 50 so QPU = 50 (alternate)

MA1

$$PQS = 180 - (50 + 110) = 20, x = 180 - 20 = 160$$

MA1

14.

angle BFE = 50, alternate

MA1

angle BEF = 80, angles on straight line add to 180°

MA1

angle EBF = 50, angle sum of triangle, so triangle is isosceles

MA1