

St. Patrick's High School, Keady Mathematics Department

GCSE Mathematics Practice Booklet

M4

 $\underline{\text{Topic 5}}-\underline{\text{Geometry and Measures 2}}$

Angles

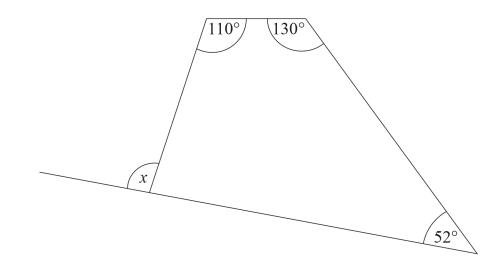
Circle Theorems

Questions taken from CCEA Past Papers Mark Scheme included at the end of this booklet

St. Patrick's High School, Keady

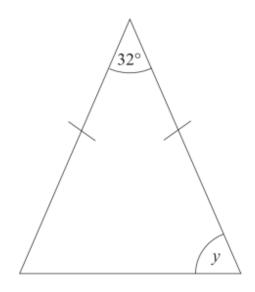
(a) Work out the size of the angle x in the diagram below.

Q1



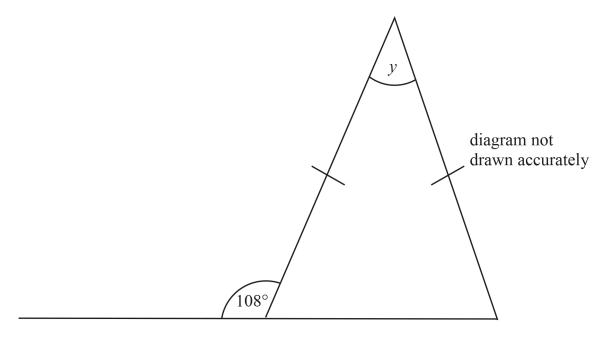
Answer _____° [3]

(b) Work out the size of the angle *y* in the diagram below.

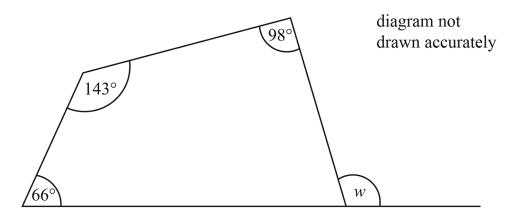


Answer _____° [2]

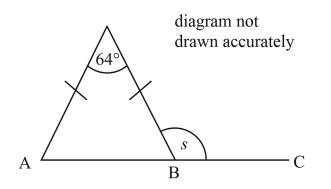
Q2 Work out the size of angle *y* in the diagram below.



Answer $y = ___^{\circ}$ [3]



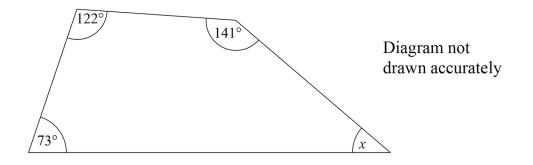
Answer w =_____° [3]



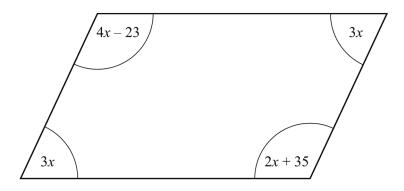
Work out the size of the angle *s*.

Q4

Answer *s* = ______ ° [3]

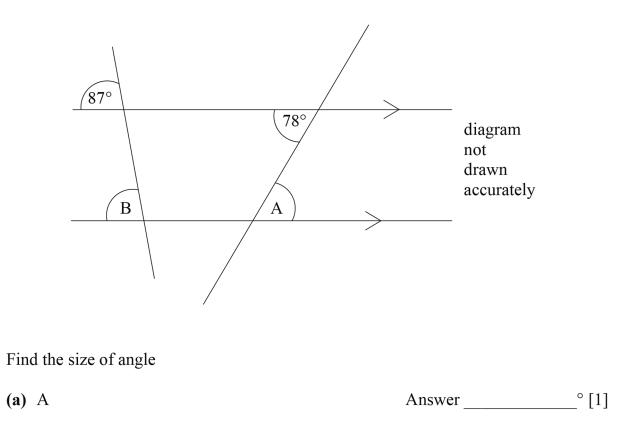


Answer x =_____ ° [2]

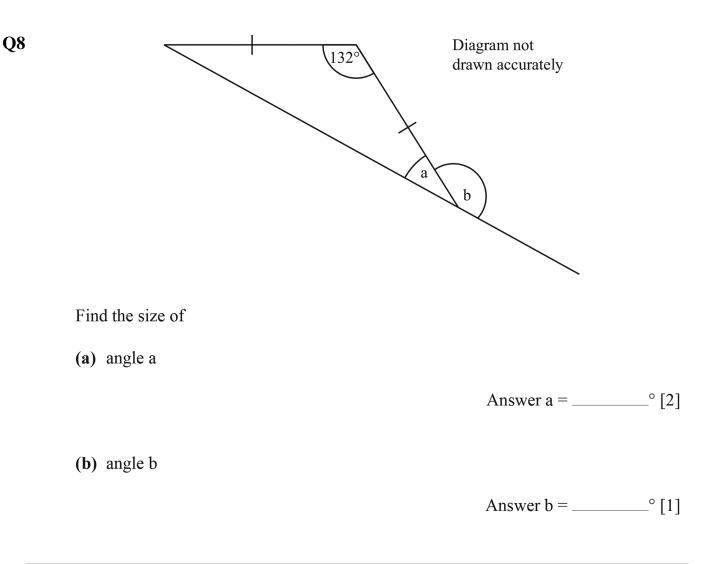


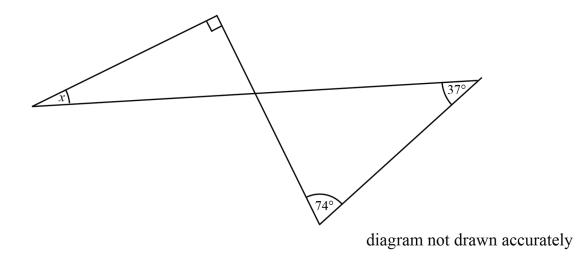
The diagram above is a parallelogram. The sizes of the angles in degrees are 3x, 4x - 23, 3x and 2x + 35Work out the value of x.

Answer *x* = _____ [3]



(b) B Answer _____° [1]



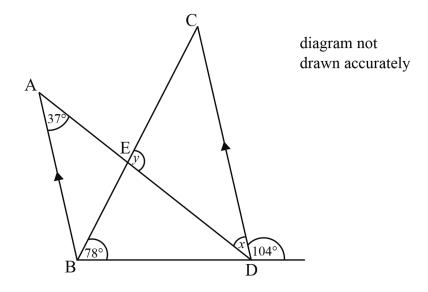


Calculate the size of the angle marked *x*.

Q9

Answer _____ ° [3]

Q10 In the diagram lines AB and CD are parallel.

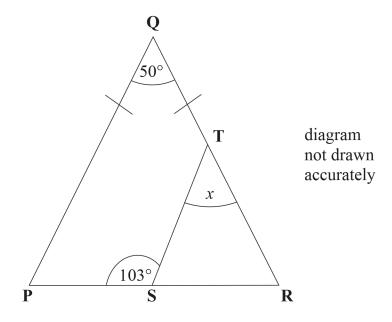


(a) Find the size of the angle x.

Answer ______° [1]

(b) Calculate the size of the angle y.

Answer ______° [2]



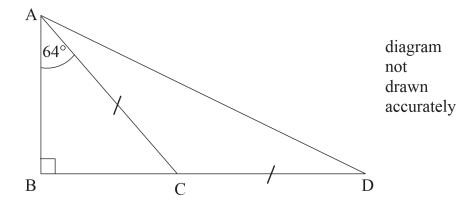
Triangle PQR is isosceles with PQ = QR.

(a) Calculate the size of angle x

Answer _____° [3]

(b) Hence decide if the lines PQ and ST are parallel.

 because		
		[0]
 	 	 [2]



ABC is a right-angled triangle. ACD is an isosceles triangle. BCD is a straight line.

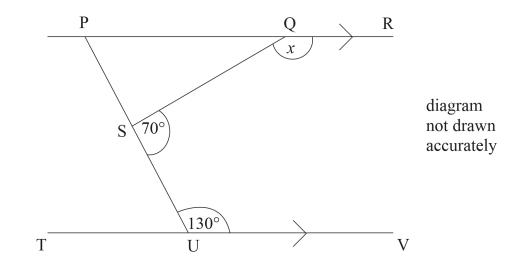
Calculate the size of

(a) angle ACB,

Answer ______ ° [2]

(b) angle ADC.

Answer ______ ° [3]



PR and TV are parallel lines.

Q13

Calculate the size of angle *x*.

Answer _____° [3]

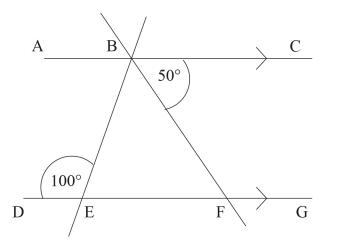


diagram not drawn accurately

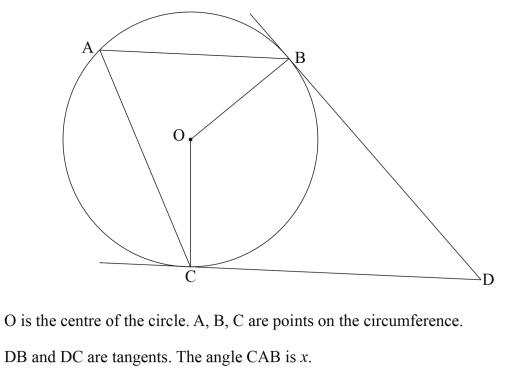
AC and DG are parallel lines.

Angle CBF = 50° and angle BED = 100°

What type of triangle is BEF?

Give a reason for each angle found.

Answer [3]



Find, in simplest form, in terms of x,

(a) angle BOC,

Q15

(b) angle BDC.

Answer _____ [2]

Answer _____ [1]

Given that the lines AB and CD are parallel find, in simplest form, in terms of x,

(c) angle ABO,

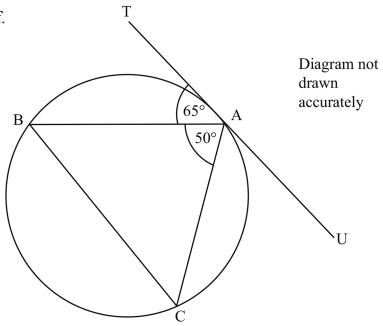
Answer _____ [2]

(d) angle ACO.

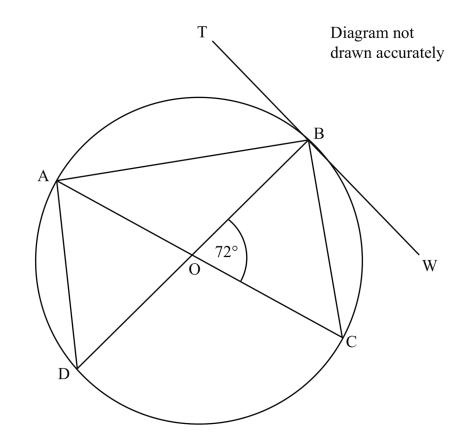
Answer _____ [2]

Q16 Prove that BC is parallel to the tangent TU in the diagram shown.

Justify each step of your proof.



[3]



O is the centre of the circle and the tangent TW touches the circle at B.

Find the size of the angles

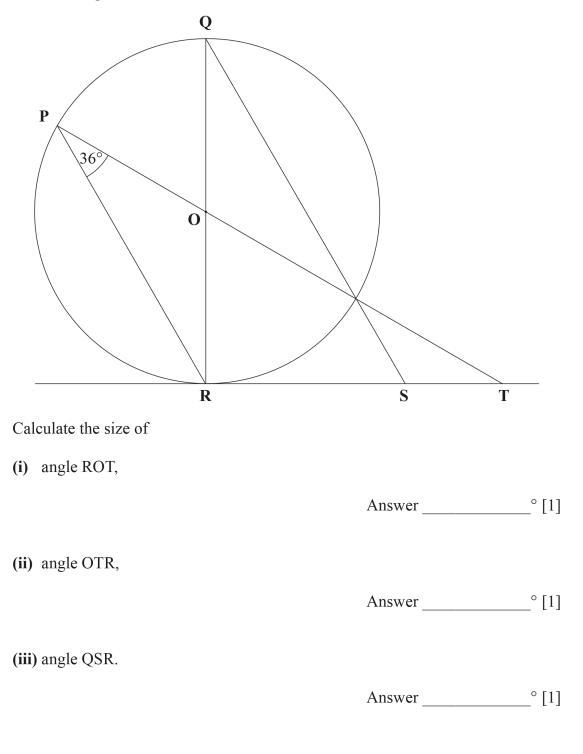
(a) TBO

	Answe	er° [1]
(b)	CAB	
	Answe	er° [1]
(c)	CBW	
	Answe	er° [1]
(d)	DBC	
	Answe	er° [1]

(a) In the diagram shown, O is the centre of the circle.

P, Q and R are points on the circumference of the circle.

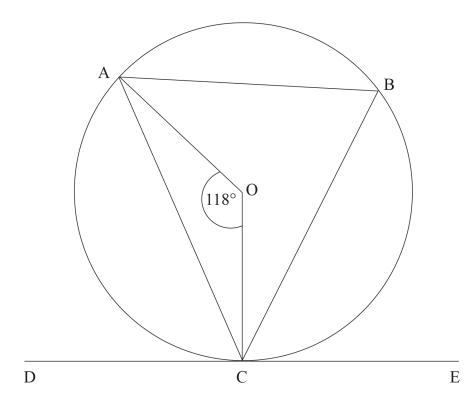
RST is a tangent to the circle.



(b) O is the centre of the circle through A, B and C.

DCE is a tangent to the circle at C.

Angle AOC = 118°



(i) Find the size of angle ACD. Give a reason for each step.

Answer Angle ACD = _____°

Reasons:

[3]

(ii) Angle BCE = x.

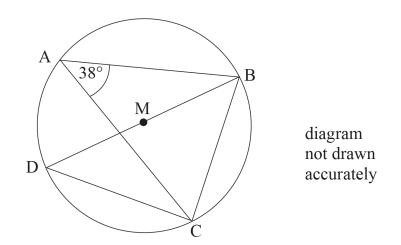
Express the angles BAC and BCA in terms of *x*.

Answer BAC = _____° [1] BCA = _____° [2] A, B, C and D are points on the circumference of a circle with centre M.

BD is the diameter of the circle.

Angle BAC = 38°

Q20



(a) Find the size of angle BDC, giving a reason for your answer.

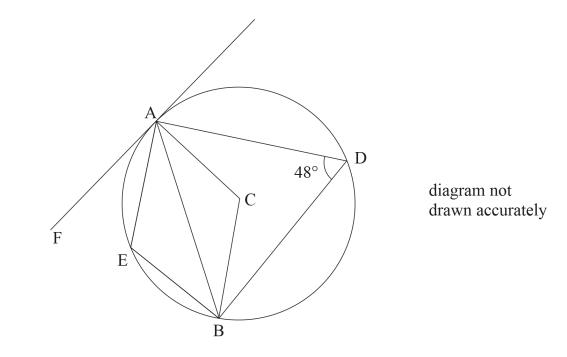
Answer	° because	[2]
_		

(b) Find the size of angle BCD, giving a reason for your answer.

Answer	° because	[2]

(c) Find the size of angle BMC, giving a reason for your answer.

Answer° because	[2]
-----------------	-----



A, B, D and E are points on the circumference of a circle, centre C.

 $\angle ADB = 48^{\circ}$

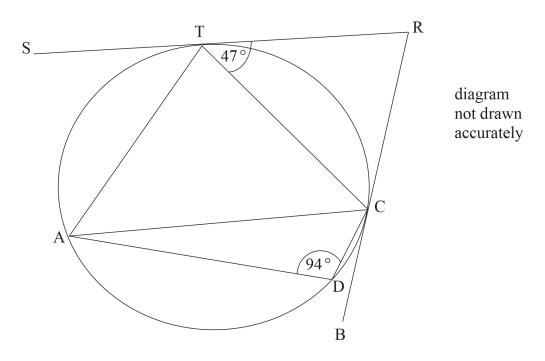
AF is a tangent to the circle.

Find the size of the following angles, giving a reason for each answer.

(a) $\angle AEB = $	° because	
		[2]
(b) ∠ ACB =	° because	
		[2]
(c) ∠ BAF =	° because	
		[2]

The lines STR and BCR are tangents to the circle shown.

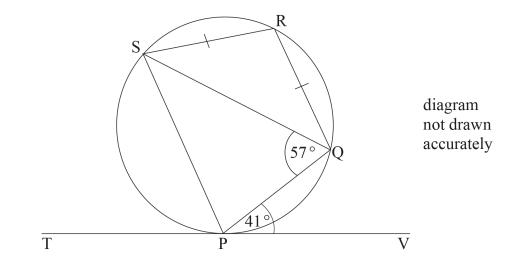
Angle RTC = 47 $^\circ$ and angle ADC = 94 $^\circ$



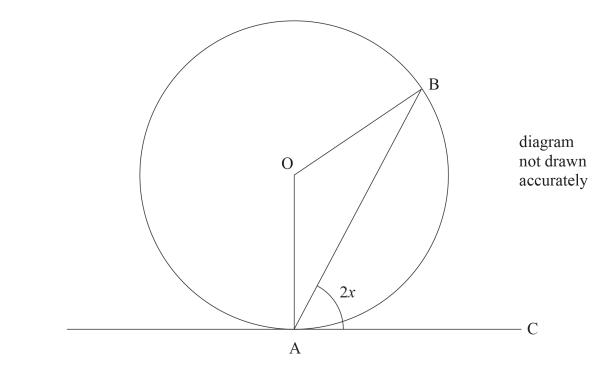
John proved that the lines AC and SR are parallel. He used the following proof but didn't give his reasons.

Using the properties of tangents and circle theorems complete John's argument.

1.	Angle RCT = 47° because
2.	Angle RTC = Angle TAC because
3.	Angle ATC = 86° because
4.	Angle STA = 47° because
5.	So the lines AC and SR are parallel because[5



TV is a tangent to the circle at P. SR = RQAngle $QPV = 41^{\circ}$ and angle $SQP = 57^{\circ}$ Show that SP is parallel to RQ. You must give reasons to justify any angles that you calculate.



A and B are points on the circumference of a circle, centre O.

AC is a tangent to the circle.

Angle BAC = 2x

Find the size of the angle AOB, in terms of x, giving a reason for each stage of your working.

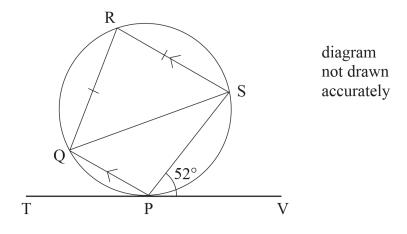
Answer _____ ° [3]

QR = RS

PQ is parallel to SR

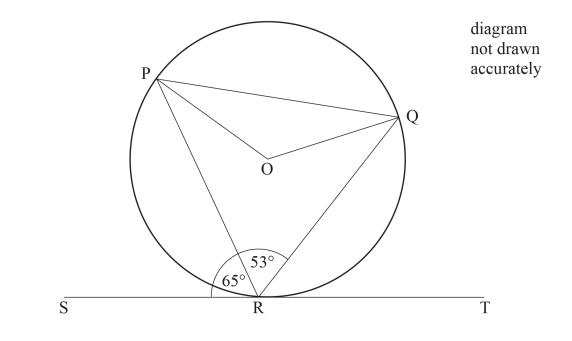
TPV is a tangent to the circle at the point P

Angle SPV = 52°



Find the size of angle SPQ explaining clearly each step of your solution.

Answer Angle SPQ = $__{\circ}$ [6]



P, Q and R are points on the circumference of a circle, centre O. The line ST is a tangent to the circle. Angle PRS = 65° Angle PRQ = 53°

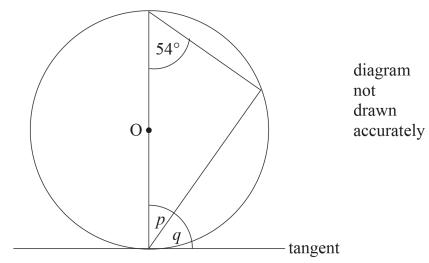
(a) Calculate the size of angle POQ, giving a reason for your answer.

Answer	 ° because		
			[2]

(b) Calculate the size of angle OQR, giving reasons for each step of your answer.

Answer ______° [3]

Q27 (a) O is the centre of the circle.



Calculate the size of angle

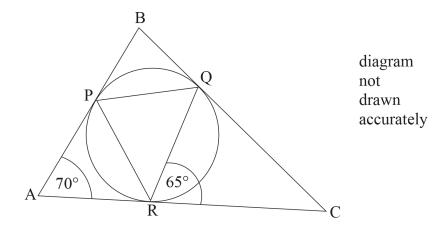
(i) *p*

Answer _____° [1]

(ii) *q*

Answer _____° [1]

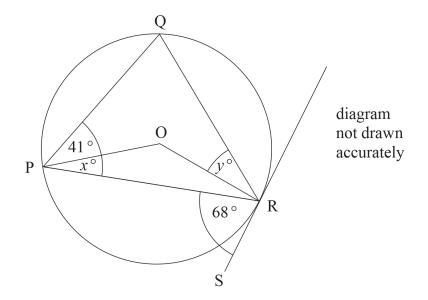
(b) The lines AB, BC, CA are tangents to the circle.



What type of triangle is triangle **BPQ**?

You must explain your reasoning clearly.

Answer [4]



The diagram shows a circle with centre O.

SR is a tangent to the circle.

Find the size of angles *x* and *y* giving reasons for each stage of your working.

1.	(a) $360 - (110 + 130 + 52)$	MA1
	68	MA1
	112	A1
	(b) $(180 - 32) \div 2$	MA1
	74	Al

180 - 108 = 72	MA1
$180 - (72 \times 2)$	MA1
36	A1
	180 – (72 × 2)

3.	360 - (66 + 143 + 98) or 360 - 307	MA1
	53	A1
	127	MA1

4. (180 - 64) ÷ 2 58 122

M1 A1 MA1

> M1 A1

5. 360 - (122 + 141 + 73) or 360 - 33624

6. $4x - 23 = 2x + 35$ 2x = 58 x = 29 or		or or	3x + 4x - 23 + 3x + 2x + 35 = 360 12x = 348 x = 29	M1 MA1 MA1	
	4x - 23 + 3x = 180 7x = 203 x = 29	or or	2x + 35 + 3x = 180 5x = 145 x = 29	M1 MA1 MA1	

(a) 78°	A1
(b) 87°	A1

8.	(a)	180 - 132 = 48 $48 \div 2$	M1	
		24	A1	
	(b)	180 - (a) = 156	MA1	

9.	180 - (74 + 37) = 69	MA1
	vertically opposite angle = 69	A1
	x = 180 - (90 + 69) = 21	MA1

10.	(a)	37°	A1
	(b)	$ABE = 104 - 78 = 26^{\circ}$	MA1
		$AEB = 180 - (26 + 37) = 117^{\circ} = y$	MA1
		or	
		$EDB = 180 - (104 + 37) = 39^{\circ}$	
		$BED = 180 - (78 + 39) = 63^{\circ}$	MA1
		$y = 180 - 63 = 117^{\circ}$	MA1
		or	
		$BDC = 76^{\circ}$	
		$BCD = 180 - (76 + 78) = 26^{\circ}$	MA1
		$y = 180 - (26 + 37) = 117^{\circ}$	MA1

11. (a)	QPR = QRS = 65° (mark gained for angle QRS as 65 in diagram) TSR = 77° (may be marked in diagram) x = 180 - (77 + 65) = 38° (3 marks for correct ans)	MA1 MA1 MA1
(b)	No because $50 + 142 \neq 180^{\circ}$ or because $65 + 103 \neq 180^{\circ}$ or because the angles between the two lines do not add up to 180 so r or because $38 \neq 50$, corresponding. Allow A1 for numerical error but correct argument	not parallel A2

12.	(a) $180 - 90 - 64$ or $= 26$	90 - 64	M1 A1
	(b) $180 - 26 = 154$		MA1
	$\frac{180-154}{2}$		M1
	= 13		Al

13.	QSP = 110	MA1
	TUP = 50 so $QPU = 50$ (alternate)	MA1
	PQS = 180 - (50 + 110) = 20, x = 180 - 20 = 160	MA1

•	angle $BFE = 50$, alternate	MA1
	angle BEF = 80, angles on straight line add to 180°	MA1
	angle $EBF = 50$, angle sum of triangle, so triangle is isosceles	MA1

15.	(a)	2x	A1	
	(b)	Uses fact that tangent angles are 90 $^\circ$	M1	
		180 - 2x	MA1	
	(c)	Angle ABD	M1	
		2x - 90	MA1	
	(d)	$360 - 2x$ seen or angle ACT = x°	M1	
		90 - x	MA1	

$ACB = 65^{\circ} AST$	C1
$ABC = 65^{\circ}$ Angles of a triangle	C1
So TU is parallel to BC, alternate angles equal	C1

(a)	90	A1
(b)	36	A1
(c)	36	A1
(d)	54	A1

18.		
10.	(a) (i) Angle ROT = 72°	Al
	(ii) Angle $OTR = 18^{\circ}$	A1
	(iii) Angle $QSR = 54$	A1

19.	(b) (i)	$ACD = 59^{\circ}$	A1
		Because ABC = 59° – angle at centre is twice angle on circumfer (allow angle at circumference is half the angle at the centre) So ACD = 59° – angle in alternate segment	ence MA1 MA1
		alternative solution	
		AOC is isosceles so $OCA = 31^{\circ}$	MA1
		OCD is 90°	MA1
		$ACD = 90 - 31 = 59^{\circ}$	A1
	(ii) 1	BAC = x	A1
		$BCA = 180^{\circ} - (x + 59^{\circ})$	MA1
		$= 121^{\circ} - x$	A1

20.	(a)	38° Because angles in the same segment are equal	A1 MA1
	(b)	90° Because the angle in a semi-circle is 90°	A1 MA1
	(c)	76° Because the angle at the centre is twice the angle at the circumference	A1 MA1

21.	(a)	132° because opposite angles in a cyclic quadrilateral add up to 180°	A1 A1
	(b)	96° (or 264°) because the angle at the centre is twice the angle on the circumference	A1 A1
	(c)	48° because of the Alternate Segment Theorem (or $90 - 42 = 48^{\circ}$ using tangent/radius and angles in isosceles triangle ABC)	A1 A1

1.	TRC is isosceles, tangents are the same length	A1
2.	Alternate Segment Theorem	A1
3.	Opposite Angles of Cyclic Quad add to give 180°	A1
4.	Angles on a straight line add to 180°	A1
5.	Angle STA = Angle TAC and are alternate	A1

MA1
MA1
MA1)
MA1)
MA1
MA1
MA1

•	Using Alternate Segment Theorem angle on circumference is $2x$	MA2
	Angle at centre is double the angle on the circumference so $AOB = 4x$	MA1

alternative solution

<oab -="" 2x<="" 90="" =="" th=""><th>angle between tangent an</th><th>nd radius is 90°</th><th>MA1</th></oab>	angle between tangent an	nd radius is 90°	MA1
< ABO = 90 - 2x	angles in isoceles triangl	e equal	MA1
<aob (90)<="" -="" 180="" =="" td=""><td>(-2x) - (90 - 2x) = 4x</td><td>angles in triangle add to 180°</td><td>MA1</td></aob>	(-2x) - (90 - 2x) = 4x	angles in triangle add to 180°	MA1

Angle PQS = 52° because AST	MA1MA1
Angle $RSQ = 52^{\circ}$ because alternate angles are equal	MA1
Angle $SRQ = 76^{\circ}$ because isosceles triangle	MA1
Angle SPQ = 104° because opposite angles in a cyclic quadrilateral	
add up to 180°	MA1MA1

6.	(a)	Angle $POQ = 106^{\circ}$ because the angle at the centre is twice the angle at the circumference		A2
	(b)	Angle PQR = 65°	Alternate Segment Theorem	MA1
		Angle PQO = 37°	isosceles triangle (radii equal)	MA1
		Angle OQR = $65 - 37 = 28^{\circ}$		MA1

27. (a) (i) $p = 36^{\circ}$ A1 (ii) $q = 54^{\circ}$ A1(b) ARP = 55, two tangents equal so isosceles triangle MA1 PRQ = 60, adjacent or straight line MA1 BPQ = 60, alternate segment MA1 BQP = 60, 2 tangents; isosceles or alternate segment theorem MA1 so PBQ = 60, angles in triangle : equilateral alternative solution RCQ = 50, two tangents equal so isosceles triangle MA1 ABC = 60, angles in a triangle MA1 BPQ = BQP = 60, 2 tangents so isosceles triangle or alternate segment theorem MA1 Equilateral A1

Angle PQR = 68° Angle POR = 136°	Alternate Segment Theorem Angle at centre is twice the angle	A1 MA1
C	at the circumference	A1 MA1
$x = 22^{\circ}$	Isosceles triangle	MA1
$y = 27^{\circ}$	Angles in quadrilateral add up to 360°	MA1
Alternative Solution		
Angle PRO = 22°	Tangent/radius 90°	MA1
$x = 22^{\circ}$	Isosceles triangle	MA1
Angle POR = 136°		A1
Angle PQR = 68°	Angle at centre = $2 \times$ angle at circumference	A1 MA1
$y = 27^{\circ}$	Angles in quadrilateral add up to 360°	MA1