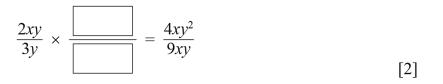


St. Patrick's High School, Keady Mathematics Department

GCSE Mathematics Practice Booklet

M7 Topic 2 –Algebra l


Trial and Improvement Direct Proportion Simultaneous Equations Changing the Subject Inequalities Indices Sequences

<u>Section A – Non Calculator Questions / Mark Scheme Pages 1-57</u> <u>Section B – Calculator Questions / Mark Scheme Pages 58-94</u>

Questions taken from CCEA Past Papers

Q1 Complete the boxes

Q2 Simplify the following.

(a)
$$4y^3 \times 3y^4$$

Answer _____ [1]

(b) $(m^4)^5$

Answer [1]

Q3

Simplify
$$\frac{m^5 \times m^3}{m^2}$$

Answer [1]

Q4	(a) Simplify		
	(i) $12x^5 \div 3x^3$		
		Answer	[2]
	(ii) $(x^3)^4$		
		Answer	[1]
Q5	Simplify each of the following.		
	(a) $4p^3 \times 3p^4$		
		Answer	[1]
	(b) $(q^2)^3 \div q^8$		
		Answer	[1]

(a)	Simplify		
	(i) $w^3 \times w^2$		
		Answer [[1]
	(ii) $\frac{y^6}{y^2}$		
		Answer [1]
(b)	Work out the n^{th} term of the sequence		
	7, 14, 21, 28, 35		
		Answer [[1]
(b)	Work out the n^{th} term of the sequence		

Q7 Rewrite p + 8 = 6 - q to make q the subject.

Q6

Answer *q* = _____ [2]

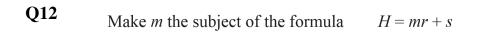
Q8 Rewrite 3y + 1 = 5y - x to make x the subject.

Answer *x* = _____ [2]

Q9

$s = ut + \frac{1}{2}at^2$

Find the value of *s* when u = 80, a = -5 and t = 4


Answer s = [3]

Q10 Rearrange y = 8x + 10 to make x the subject.

Answer _____ [2]

Q11 Make *v* the subject of 2s = (u + v)t

Answer *v* = _____ [2]

Answer *m* = _____ [2]

Q13 Rewrite 4 + x = 9 - y to make y the subject.

Give your answer in its simplest form.

Answer y = [2]

Q14 Make *y* the subject of

$$3y - 12 = 4x$$

Answer *y* = _____ [2]

Q15 Rearrange v = u + at to make a the subject.

Answer a = [2]

Q16 Solve 4n + 3 > 28

Answer _____ [2]

Q17

(a) Solve the inequality $6y + 5 \ge 2$

Answer _____ [2]

(b) Write down the smallest integer value of y which satisfies the inequality

 $6y + 5 \ge 2$

Answer *y* = _____ [1]

Q18

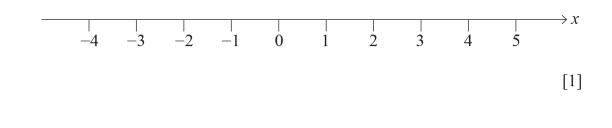
Solve

8x < 6x + 7

Answer _____ [2]

Q19 A rectangle has a length of 3x cm and a width of (x + 5) cm.

The length is greater than the width.


(a) Write this information as an inequality in *x*.

Answer [1]

(b) (i) Solve the inequality.

Answer _____ [1]

(ii) Show your answer on the number line below.

Q20 (a) Solve $2x - 1 \le -5$

Answer _____ [2]

(b) Show your solution on the number line.

$$-4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad x \qquad [1]$$

Q21 Solve

$4 < 3n \le 18$ for integer *n*

Answer _____ [3]

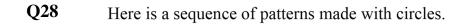
Q22 List the values of the integer *n* which satisfy the inequality

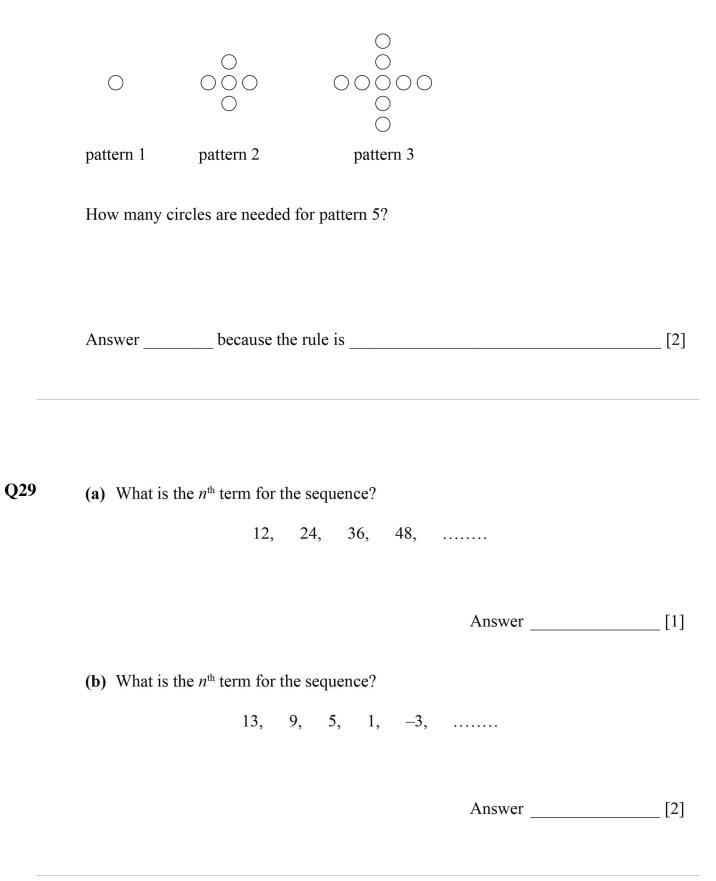
 $-7 < 3n \le 6$

Answer _____ [3]

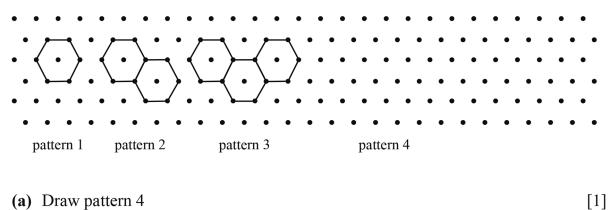
Q23 Solve the inequality $5x + 4 \le 7x - 5$

Answer _____ [2]


Q24 Solve $-9 \le 3y < 6$ where y is an integer.


		Answer	[2]
Q25	Solve	12 - n > 4n - 3	

Answer _____ [2]


St. Patrick's High	School, Keady
--------------------	---------------

Q26	Look at t	ne sequen	ce below				
	3 5	9	15	23			
	(a) Wha	t is the net	xt numbe	r?			
						Answer	[1]
				-	next number		[1]
Q27	Write dov	vn the nex	xt two ter	ms in th	e sequence		
	23, 21,	17, 11,	,				[2]

Q30 Regular hexagons of side length 1 cm are placed to form a pattern.

(a) Draw pattern 4

(b) Complete the following table.

pattern number	1	2	3	4
perimeter of shape (cm)	6	10		
				[2]

(c) Describe how the perimeter of the shape changes as each new hexagon is added.

(d) What is the perimeter of pattern 9?

Answer cm [2]

[1]

Q31	Write down the next two terms in the following sequence	
	18, 17, 14, 9,,	[2]
Q32	Write down the two missing numbers in this sequence.	
	1, 3, 6, 10, 15,, 28,	[2]
Q33	The first four terms of a sequence are	
	3, 8, 13, 18,	
	(a) Write down the n^{th} term of the sequence.	
	Answer	[2]
	(b) Which term of the sequence will equal 73?	

Answer _____ [1]

St.	Patrick's	High	School,	Keady
-----	-----------	------	---------	-------

Q34	(a) Write dow	n the next t	wo number	s in the se	quence	
	25	24	20	13		 [2]
	(b) Explain th	e rule for th	nis sequence	2.		
	Answer _					 [2]

Q35 A sequence is formed using the rule:

"Find the next term by adding the previous two terms"

Use this rule to complete the sequences below.

(a)	1,	7,	,	,	 [1]
(b)	3,	-5,	,	,	 [1]
(c)	x,	4,	,	,	 [1]

(a)	Jenny writes	the first six	square numbers as
------------	--------------	---------------	-------------------

2, 4, 9, 16, 25, 36

Explain why she is wrong.

Q36

L J

(b) Part of the sequence of triangular numbers is shown.

... 21, 28, 36, 45, 55, 66 ...

(i) Which triangular number comes directly before 21?

Answer [1]

(ii) Write down the smallest triangular number which is greater than 100

Answer _____ [1]

Q37 Work out the n^{th} term of the sequence 6, 3, 0, -3, ...

Answer [2]

Q38	(a) Fill in the next two terms of this sequent 14, 13, 11, 8,,		[2]
	(b) Write down the name of the numbers in 1, 8, 27, 64,	n the sequence below.	
		Answer	[1]
Q39	Find the <i>n</i> th term of the sequence $7, 4, 1,$	-2,	

Answer *n*th term = _____ [2]

Q40 Cathy is working on a sequence:

4, 9, 14, 19, _____

She continues this sequence for a few more terms and spots a pattern.

She uses the pattern to predict correctly what the **last digit** is in the 30th term.

What is the last digit?

Answer _____ [1]

Q41 The first four terms of a sequence are

2 7 12 17

Write down an expression for the n^{th} term of the sequence.

Answer _____ [2]

Q42 Each new number in a sequence is found using the rule

multiply the previous number by 3 and then subtract 5

Find the next two numbers in this sequence.

2 , ____ , ____

[2]

Q43 The first three terms of a sequence are 1, 5 and 13 The rule is "add the next multiple of 4" Find the next two terms in this sequence. 1 5 13

[2]

Q44	A sequence has n^{th} term $n^2 + 4$
	π sequence has <i>n</i> term $n \pm 4$

(a) Write down the first 3 terms of the sequence.

Answer _____, ____ [2]

(b) Here are three sequences

 $n^3 + 2$ 3n + 1 4n - 1

The number 13 is a term in one of these. Which one? **Explain your answer clearly.**

Answer _____

because

Q45 The first three terms of a sequence are $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$...

Write down the n^{th} term.

Answer _____ [1]

[2]

Q46	A sequence is formed using the rule:
X IV	A sequence is formed using the rule:

"Find the next term by adding the previous two terms"

Use this rule to complete the sequence below.

4,	,	,		[1]
	4,	4,,	4,,,	4,,,,,

Q47 Find the *n*th term of the sequence

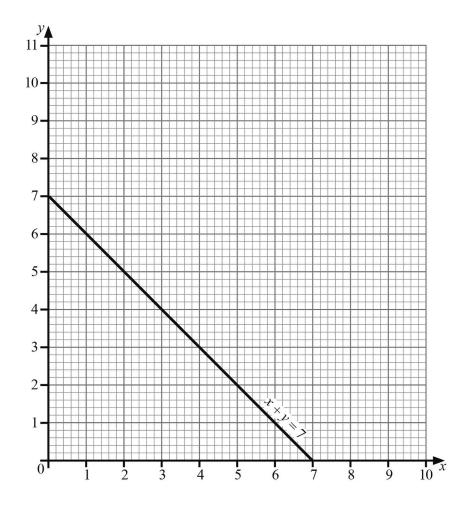
7, 4, 1, -2,

Answer *n*th term = _____ [2]

Q48 (a) The first four terms of a sequence are

1, 4, 7, 10

What is the n^{th} term for this sequence?


Answer [2]

(b) Hence find the n^{th} term for the sequence below.

$$\frac{1}{1}$$
, $\frac{4}{4}$, $\frac{9}{7}$, $\frac{16}{10}$

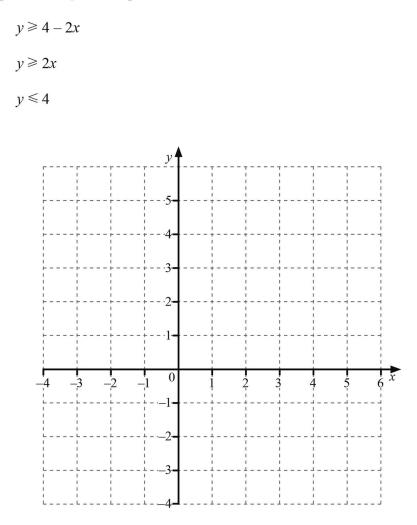
Answer _____ [2]

Q49 The line x + y = 7 is shown below.

(a) On the diagram illustrate the region represented by the inequalities

 $x + y \leqslant 7, \qquad y \ge 1, \qquad y \leqslant 5x + 1$

Mark the region with the letter R.

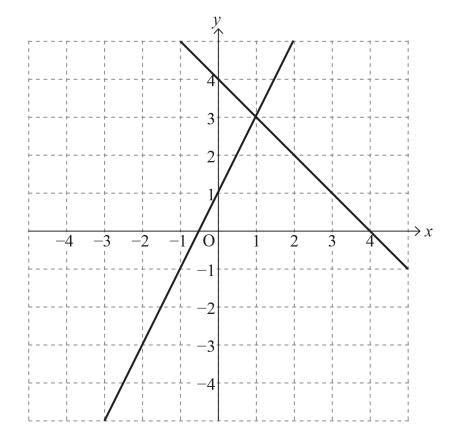

(b) In the region R, what is the greatest value of 2x + y?

Answer _____ [2]

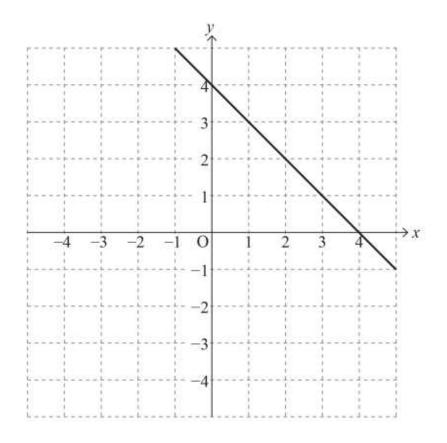
[2]

St. Patrick's High School, Keady

Q50 (a) On the grid below use suitable shading and the letter R to show the region represented by the inequalities



[3]


(b) In the region R, what is the maximum value of x + y?

Answer [1]

The lines y = 2x + 1 and x + y = 4 have been drawn on the grid. By drawing another line on the grid above, indicate clearly by the letter R the region satisfying $y \ge 2x + 1$ and $x + y \le 4$ and $x \ge -1$ [2]

By drawing more lines on the grid above, indicate clearly by the letter B the region satisfying $y \le 2x$ and $x + y \le 4$ and $y \ge 1$

[2]

(b)

Q52 Rewrite 3a - b = c(2 - a) to make *a* the subject.

Answer *a* = _____ [3]

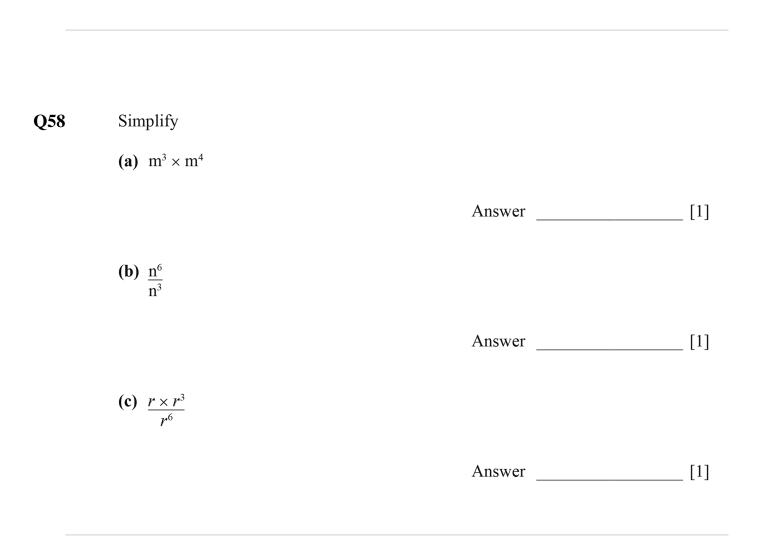
Q53 Rearrange $p = 2q - 5r^2t$ to make *r* the subject of the formula.

Answer *r* = _____ [3]

Q54 Rearrange 8(xy-5) = 3y - 7x to make x the subject.

Answer *x* = _____ [4]

Q55 Make *n* the subject of the formula $H = \frac{5-2n}{6+n}$


Answer _____ [4]

Q56 Make *b* the subject of 3(b+4) = a(5-2b)

Answer *b* = _____ [4]

Q57 Make x the subject of the formula
$$y = \frac{b}{\sqrt{x}}$$

Answer *x* = _____ [2]

Q59	Simplify each of the following.		
	(a) $4p^3 \times 3p^4$		
	(b) $(q^2)^3 \div q^8$	Answer	[1]
		Answer	[1]

Q60

(a)	Simplify (i) $w^3 \times w^2$		
		Answer [[1]
	(ii) $\frac{y^6}{y^2}$		
		Answer [[1]
(b)	Work out the n^{th} term of the sequence		
	7, 14, 21, 28, 35		
		Answer[[1]
(c)	Work out the value of		
	(i) 5^{-2}		
		Answer[[1]
	(ii) $1^5 + 6^0$		
		Answer [[1]

Q61 The height of a balloon, h, varies directly as the square root of its surface area, A.When the balloon's surface area is 81 its height is 12What is its height when its surface area is 144?

Answer [3]

Q62 T varies as the square of d

When d = 0.3, T = 10.8

(a) Express T in terms of d

Answer [3]

(b) Find a value of *d* for which T = 30

Answer _____ [2]

Q63 Solve the simultaneous equations

3x - y = 7 and 5x - 2y = 10

A solution by trial and improvement will not be accepted.

Answer
$$x =$$
 [3]

1.	$\frac{2y}{3x}$	A1 A1
2.		
_ .	(a) $12y^7$ (b) m^{20}	A1 A1
3.	m ⁶	A1
4.	(a) (i) $4x^2$ (ii) x^{12}	A1 A1 A1

5.	i	(a)	$12p^{7}$	A1
		(b)	$\frac{1}{q^2}$ or q^{-2}	A1

6.	(a)	(i)	w ⁵	A1
		(ii)	y^4	A1
	(b)	7n		A1

7.	p + q = -2	MA1
	q = -2 - p	MA1

8.	x = 5y - 3y - 1	MA1
	x = 2y - 1	A1

9.	$s = 80 \times 4 + \frac{1}{2} \times (-5) \times 16$	MA1
	s = 320 - 40	A1
	s = 280	A1

10.

$$y - 10 = 8x$$
 $8x = y - 10$
 A1

 $\frac{y - 10}{8} = x$
 $x = \frac{y - 10}{8}$
 A1

11.
$$2s - ut = vt$$
MA1 $v = \frac{2s - ut}{t}$ MA1or $\frac{2s}{t} = u + v$ MA1 $v = \frac{2s}{t} - u$ MA1

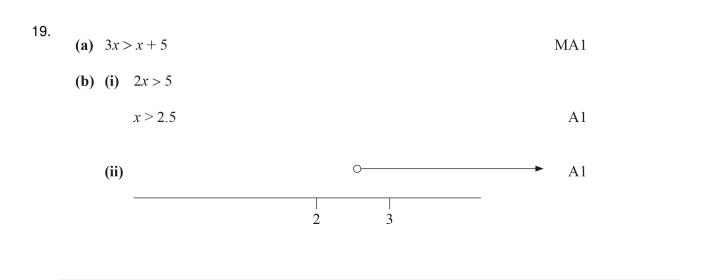
12.	H-s=mr	MA1
	$m = \frac{H-s}{r}$	A1

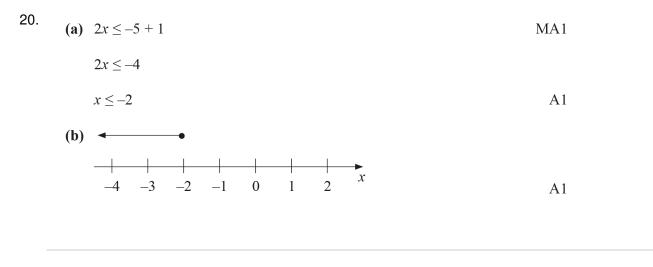
13.
$$4 + y = 9 - x$$
 A1
 $y = 9 - x - 4$
 $y = 5 - x \text{ or } y = -x + 5$ A1

14.
$$3y = 4x + 12$$
 MA1

$$y = \frac{4x + 12}{3}$$
 or $y = \frac{4}{3}x + 4$ A1

15.


$$at = v - u$$
 MA1
$$a = \frac{v - u}{t}$$
 MA1


 16.
 4n > 25 MA1

 $n > \frac{25}{4} (6\frac{1}{4})$ MA1

17.	(a) $6y \ge -3$	M1
	$y \ge -\frac{1}{2}$	A1
	(b) 0	A1

2x < 7 MA1 $x < \frac{7}{2}$ or 3.5 A1

21.	$\frac{4}{3} < n \le 6$	M1	
	2, 3, 4, 5, 6	A2	

22.
$$-\frac{7}{3} < n \le 2$$
 MA1
-2, -1, 0, 1, 2 MA2

23.		
20.	$5 + 4 \le 7x - 5x (or \ 9 \le 2x)$ $x \ge 4.5 \ or \ x \ge 4\frac{1}{2} \ or \ x \ge \frac{9}{2}$	M1
	$x \ge 4.5 \text{ or } x \ge 4\overline{2} \text{ or } x \ge \overline{2}$	Al

24.	$-3 \le y < 2$ -3, -2, -1, 0, 1	MA1 A1	
_			
25.	15 > 5n	MA1	
	<i>n</i> < 3	A1	
_			
26.	(a) 33	A1	
	(b) add an extra 2 each time	MA1	
27.			
27.	3, -7	A1 A1	
_			
20			
28.	17	MA1	
	You add 4 each time	MA1	

29.	(a) 12 <i>n</i>	A1
	(b) $-4n + 17 \text{ or } 17 - 4n$	A1 A1

30.	(a)	Correct pattern drawn	A1
	(b)	14 18	A1 A1
	(c)	The perimeter increases by 4 cm	A1
	(d)	38	M1 A1

31. 2 -7

A1, A1

32. 21, 36

A1 A1

33. (a	a) $5n-2$	A1 A1
(t	b) 15th	A1

34.	(a)	3 – 10	A1 A1	
	(b)	Each time you subtract 3 more than the time before	A2	

35.	(a) 8, 15, 23	A1
	(b) −2, −7, −9	A1
	(c) $x + 4$, $x + 8$, $2x + 12$	A1

S	۵	
J	O	•

(a) 2 is not a square number	A1
(b) (i) 15	A1
(ii) 105	A1

37. 9-3n or -3n+9(A1 for answer of -3n + any constant)

38.

(a) 4 and -1	A1 A1
(b) Cube	A1

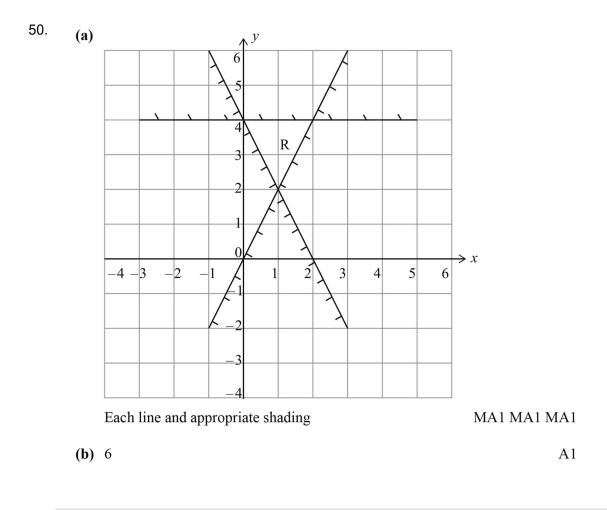
39.

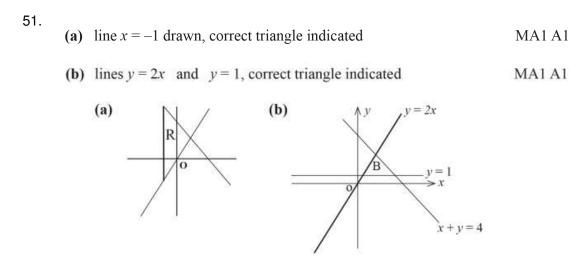
-3n + 10(A1 for -3n + d for any value of *d* except 10)

40.

9

A1


A2


41.	5n - 3 (A1 for $5n + d$, $d \neq -3$)	A2
42.	$2 \times 3 - 5 = 1$ $1 \times 3 - 5 = -2$	MA1 MA1
43.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1 A1
44.	 (a) 5, 8, 13 (b) 3n + 1 because 3 × 4 + 1 = 13 Alternative solution 3n + 1 	[A1 for any 2 correct] A2 A1 A1 A1

3n + 1 A1 because there is no *n* value such that $n^3 + 2 = 13$ or such that 4n - 1 = 13 A1

45.	$\frac{n}{n+1}$	A1
46.	x + 4, x + 8, 2x + 12	A1
47.	-3n + 10 (A1 for $-3n + d$ for any value of <i>d</i> except 10)	A2
48.	(a) $3n-2$ Allow A1 for $3n + c(c \neq -2)$ (b) $\frac{n^2}{3n-2}$	A1 A1 M1 A1

49.	(a)	y = 5x + 1 and $y = 1$ drawn plus an attempt at shading a region Region R correct	MA1 A1
	(b)	13 (Allow A1 for (6, 1) identified)	A2

52.	3a-b=2c-ac	
	3a + ac = 2c + b	MA1
	a(3+c) = 2c+b	MA1
	$a = \frac{2c+b}{3+c}$	A1

53.
$$5r^{2}t = 2q - p$$

$$r^{2} = \frac{2q - p}{5t}$$

$$r = \sqrt{\frac{2q - p}{5t}}$$
C1
C1
C1

54.	8xy - 40 = 3y - 7x	MA1
	8xy + 7x = 3y + 40	MA1
	x(8y+7) = 3y+40	MA1
	$x = \frac{3y + 40}{8y + 7}$	A1

55.

$6\mathrm{H} + \mathrm{H}n = 5 - 2\mathrm{n}$	MA1
Hn + 2n = 5 - 6H	MA1
n(H+2) = 5 - 6H	MA1
$n = \frac{5 - 6H}{H + 2}$	A1

56.	3b + 12 = 5a - 2ab	MA1
	2ab + 3b = 5a - 12	MA1
	b(2a+3) = 5a-12	MA1
	$b = \frac{5a - 12}{2a + 3}$	A1

57.	$\sqrt{x} = \frac{b}{y}$	M1
	$x = \frac{b^2}{y^2}$ or $x = \left(\frac{b}{y}\right)^2$	A1
	Alternative	
	$y^2 = \frac{b^2}{x}$	
	$xy^2 = b^2$	M1
	$x = \frac{b^2}{y^2}$	A1

 58.
 (a) m^7 A1

 (b) n^3 A1

 (c) r^{-2} or $\frac{1}{r^2}$ A1

59. (a) $12p^7$ A1

(b)
$$\frac{1}{q^2}$$
 or q^{-2} A1

60.	(a)	(i)	w^5	A1
		(ii)	<i>y</i> ⁴	A1
	(b)	7n		A1
	(c)	(i)	$\frac{1}{25}$ or 0.04	A1
		(ii)	1 + 1 = 2	A1

61.	$h = k\sqrt{A}$	M1
	$12 = k\sqrt{81}$	
	$k = \frac{4}{3}$	A1
	$h = \frac{4}{3}\sqrt{144} = 16$	A1

62.	(a)	$T = kd^2$	MA1
		10.8 = 0.09 k, k = 120	MA1
		$T = 120 d^2$	A1
	(b)	$30 = 120 d^2$	MA1
		d = 0.5 (accept -0.5)	A1

63.

6x - 2y = 14 5x - 2y = 10	OR	15x - 5y = 35 $15x - 6y = 30$	MA1
x = 4 y = 5		y = 5 $x = 4$	MA1 MA1

Q1 A solution to the equation $x^3 - 4x = 26$ lies between 3 and 4 Use trial and improvement to solve this equation. Give your answer correct to 1 decimal place. Show each stage of your working.

Answer *x* = _____ [3]

Q2 Use the method of trial and improvement to solve the equation

 $x^3 - 6x = 12$

Give your answer correct to 1 decimal place.

Show all your working.

<i>x</i>	$x^{3}-6x$	

Answer x = [4]

Q3 A solution to the equation $x^2 + 3x = 15$ lies between 2 and 3

Use trial and improvement to solve this equation.

Give your answer correct to 1 decimal place.

Show each stage of your working.

x	$x^2 + 3x$	

Answer *x* = _____ [3]

Q4 A solution to the equation $3x^2 + x = 67$ lies between x = 4 and x = 5Use trial and improvement to solve this equation. Give your answer correct to 1 decimal place. Show all your working.

	x	$3x^2 + x$	
þ			

Answer *x* = _____ [3]

Q5 The equation $x^3 + 4x^2 = 100$ has a solution between 1 and 5 Use a trial and improvement method to find this solution. Give your answer correct to one decimal place. You must show all your working.

Answer x = [4]

(a) Show that $20x - x^3 = 1$ has a solution between 4 and 5

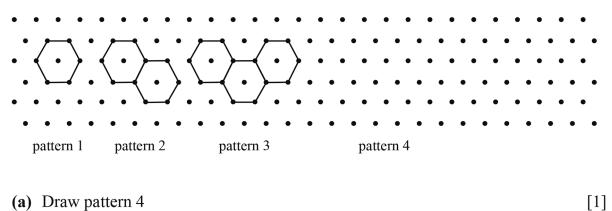
Q6

(b) Use Trial and Improvement to find this solution correct to 1 decimal place. Show all your working.

Answer [3]

Q7 Rewrite 3y + 1 = 5y - x to make x the subject.

Answer *x* = _____ [2]


Q8 Rearrange y = 8x + 10 to make x the subject.

Answer _____ [2]

St. Patrick's High	School, Keady
--------------------	---------------

Q9	Look at the sequence below				
	3 5 9 15 23				
	(a) What is the next number?				
		Answer[1]			
	(b) Explain the rule for finding the next number	r each time.			
	Answer	[1]			
Q10	(a) What is the <i>n</i> th term for the sequence?				
	12, 24, 36, 48,	,			
		Answer [1]			
	(b) What is the n^{th} term for the sequence?				
	13, 9, 5, 1, –	3,			
		Answer [2]			

Q11 Regular hexagons of side length 1 cm are placed to form a pattern.

(a) Draw pattern 4

(b) Complete the following table.

pattern number	1	2	3	4
perimeter of shape (cm)	6	10		
				[2]

(c) Describe how the perimeter of the shape changes as each new hexagon is added.

(d) What is the perimeter of pattern 9?

Answer cm [2]

[1]

Q12	Write down the two missing numbers in this sequence.		
	1, 3, 6, 10, 15,, 28,	[2]	
Q13	(a) Jenny writes the first six square numbers as		
	2, 4, 9, 16, 25, 36		
	Explain why she is wrong.		
	Answer	[1]	
	(b) Part of the sequence of triangular numbers is shown.		
	21, 28, 36, 45, 55, 66		
	(i) Which triangular number comes directly before 21?		
	Answer	_[1]	
	(ii) Write down the smallest triangular number which is greater than 100		

Answer [1]

Q14 Solve

$4 < 3n \le 18$ for integer *n*

Answer _____ [3]

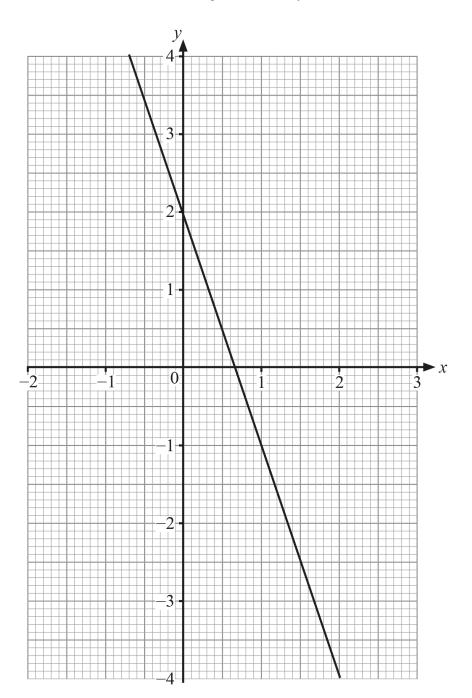
Q15 Solve 4n + 3 > 28

Answer _____ [2]

Q16 Solve the inequality $5x + 4 \le 7x - 5$

Answer _____ [2]

Q17 Solve $-9 \le 3y < 6$ where y is an integer.


Answer _____ [2]

Q18	Jenny's height is given as 156 cm, correct to the nearest cm.			
	Between what limits does Jenny's height lie?			
	Complete the following:			
	< Jenny's height <	[2]		
Q19	Simplify			
	(a) $t^3 \times t^8$			
		Answer [1]		
	(b) $(t^2)^3$			
		Answer [1]		

Q20 Simpl

Simplify $(x^5)^3$

Answer _____ [1]

By drawing a suitable line on the grid opposite solve the simultaneous equations

y = 2x - 2y = -3x + 2

Answer x =_____ y =_____ [4]

Q22 (a) Y is directly proportional to the cube of X.

Y = 960 when X = 4

Express Y in terms of X.

Answer _____ [2]

(b) Calculate the value of X when Y = 405

Answer _____ [2]

Q23 The time (T) of swing of a pendulum varies as the square root of the length (L) of the pendulum.

When T = 1.8 seconds the length of the pendulum is 0.81 m.

(a) Find the formula for T in terms of L.

Answer T = ____ [3]

(b) Use your formula to find T when L = 1.21 m.

Answer ______ seconds [1]

(c) Find the value of L for which the time of swing is 0.5 seconds.

Answer _____ m [1]

Q24 *s* is directly proportional to the square of *v*.

When v = 20, s = 250

Express *s* in terms of *v*.

Answer [3]

Q25 T varies as the square of d

When d = 0.3, T = 10.8

(a) Express T in terms of d

Answer [3]

(b) Find a value of *d* for which T = 30

Answer _____ [2]

Q26 Simplify

(a) $m^3 \times m^4$

	Answer	[1]
(b) $\frac{n^6}{n^3}$		
	Answer	[1]
(c) $\frac{r \times r^3}{r^6}$		
	Answer	[1]

Q27 Simplify $4x^3y^5 \times 3x^2y$

Answer _____ [2]

Q28	Simplify $t^3 \times t^8$	
		Answer [1]
	$(t^2)^3$	Answer [1]
	$\frac{t^{-3}}{t^2}$	
	٠ •	Answer [1]

Q29 Solve the simultaneous equations 5x + 2y = 194x - 3y = 29

A solution by trial and improvement will not be accepted.

Answer *x* = ______, *y* = _____[4]

Q30 Solve
$$x - 15 = 5y$$

 $3x = -8y - 1$

Show all your working. A solution by trial and improvement will not be accepted.

Answer x =_____ y =_____ [4]

Q31 The total weight of 5 brown and 2 white eggs was 21.6 g.

The total weight of 3 brown and 5 white eggs was 23.6 g.

Write down two simultaneous equations and solve them to find the weight of a brown egg and the weight of a white egg.

You may assume that all brown eggs have the same weight and all white eggs have the same weight.

Show all your working.

Answer Brown egg weighs _____ g

White egg weighs _____ g [5]

Q32 A bag contains 60 coins.

Each coin in the bag is either a 20p coin or a 50p coin.

The total value of the coins in the bag is $\pounds 22.80$

Work out how many of each coin is in the bag.

A solution by trial and improvement will not be accepted.

Answer _____ 20p coins

_____ 50p coins [5]

Q33 John earns £x per hour on Fridays and £y per hour on Saturdays.
In March he worked 20 hours on Fridays, 12 hours on Saturdays and earned £322
In April he worked 16 hours on Fridays, 10 hours on Saturdays and earned £262
Use simultaneous equations to find the values of x and y.

Answer x =_____

y =_____[5]

Q34 The first four terms of a sequence as	e
---	---

3, 8, 13, 18,

(a) Write down the n^{th} term of the sequence.

Answer _____ [2]

(b) Which term of the sequence will equal 73?

Answer [1]

1.	$x = 3.5 \rightarrow 28.875$ and	
	$x = 3.4 \rightarrow 25.704$	MA1
	$x = 3.45 \rightarrow 27.263625$	MA1
	x = 3.4	MA1

2. $3^3 - 6 \times 3 = 9$

$4^3 - 6 \times 4 = 40$	MA1
$3.1^3 - 6 \times 3.1 = 11.191$	
$3.2^3 - 6 \times 3.2 = 13.568$	MA1
$3.15^3 - 6 \times 3.15 = 12.355875$	MA1
Ans = 3.1	A1

3.	x = 2.6	14.56	
	x = 2.7	15.39	MA1
	<i>x</i> = 2.65	14.9725	MA1
	x = 2.7		Al
	A 2.1		111

4.	<i>x</i> = 4.5	65.25	
	<i>x</i> = 4.6	68.08	MA1
	<i>x</i> = 4.55	66.6575	MA1
	<i>x</i> = 4.6		A1

5.

x	$x^3 + 4x^2$	Comment
3.5	91.875	too low
3.6	98.496	too low
3.7	105.413	too high
3.65	101.917125	too high

between 3 and 4 between 3.6 and 3.7 Using 3.65 3.6

MA1
MA1
MA1
A1

6.	(a)	$20 \times 4 - 64 = 16$	and $20 \times 5 - 125 = -25$		MA1
	(b)	x	$20x - x^3$		
		4.5	-1.125	(too small)	
		4.4	2.816	(too big)	MA1
		4.45	0.878875	(too small)	MA1
		Answer 4.4			A1

7.	x = 5y - 3y - 1	MA1	
	x = 2y - 1	A1	

8.	y - 10 = 8x		8x = y - 10	Al
	$\frac{y-10}{8} = x$	or	$x=\frac{y-10}{8}$	Al

9.	(a) 33	A1	
	(b) add an extra 2 each time	MA1	

10.	(a) 12 <i>n</i>	A1
	(b) $-4n + 17 \text{ or } 17 - 4n$	A1 A1

11.	(a)	Correct pattern drawn	A1	
	(b)	14 18	A1 A1	
	(c)	The perimeter increases by 4 cm	A1	
	(d)	38	M1 A1	

12. _{21, 36}

A1 A1

4.0		
13.	(a) 2 is not a square number	A1
	(b) (i) 15	A1
	(ii) 105	A1

14.	$\frac{4}{3} < n \le 6$	M1	
	2, 3, 4, 5, 6	A2	

15.	4n > 25	MA1
	$n > \frac{25}{4} \left(6\frac{1}{4} \right)$	MA1

16		
	$5+4 \leq 7x-5x$ (or $9 \leq 2x$)	M1
	$5 + 4 \le 7x - 5x (or \ 9 \le 2x)$ $x \ge 4.5 \ or \ x \ge 4\frac{1}{2} \ or \ x \ge \frac{9}{2}$	A1

17.	$-3 \le y < 2$	MA1
	-3, -2, -1, 0, 1	A1

18.

 $155.5 \leq \text{Jenny's height} < 156.5$

A1 A1

19.	(a) t^{11}	A1
	(b) t^6	A1

20.

 x^{15}

A1

21.

Correct line drawn	M1 A1
x = 0.8 $y = -0.4$	A1 A1
Correct line drawn	M1 A1
x = 0.8 $y = -0.4$	A1 A1

(a) $960 = k \times 64$	MA1
$k = 15$ hence Y = $15X^3$	MA1
(b) $\frac{405}{15} = X^3$	MA1
X = 3	A1

23.	(a)	$T = k\sqrt{L}$ 1.8 = $k\sqrt{0.81}$	MA1
		k = 2	MA1
		$T = 2\sqrt{L}$	MA1
	(b)	$T = 2\sqrt{1.21} = 2.2$	MA1
		$0.5 = 2\sqrt{L}$	
		$L = 0.0625 \left(\frac{1}{16}\right)$	MA1

$s = Kv^2$ 250 = K × 400, K = $\frac{5}{8}$	M1 A1	
$230 - K \times 400, K - \frac{1}{8}$ $s = \frac{5}{8}v^2$	A1	
8		

25	

MA1
MA1
A1
MA1
A1

26.	(a) m^7	A1
	(b) n^3	A1
	(c) r^{-2} or $\frac{1}{r^2}$	A1

27.		
27.	$12x^5y^6$	
	$12\lambda y$	
	(A1 for 2 terms correct)	
	(1111012) (11115) (011001)	

A2

28.	(a) t^{11}	A1
	(b) <i>t</i> ⁶	A1
	(c) t^{-5} or $\frac{1}{t^5}$	A1

29.	15x + 6y = 57	or	20x + 8y = 76	M1
	8x - 6y = 58		20x - 15y = 145	M1
	$23x = 115 \Rightarrow x = 5$		$23y = -69 \implies y = -3$	A1
	25 + 2y = 19		5x - 6 = 19	
	y = -3		x = 5	A1

30.	$\begin{aligned} x - 5y &= 15\\ 3x + 8y &= -1 \end{aligned}$	MA1	
	3x - 15y = 45 $3x + 8y = -1$	MA1	
	-23y = 46 $y = -2$	Al	
	<i>x</i> = 5	A1	

5b + 2w = 21.6			
3b + 5w = 23.6			MA1
25b + 10w = 108	or	15b + 25w = 118	MA1
6b + 10w = 47.2		15b + 6w = 64.8	MA1
19b = 60.8		19w = 53.2	
b = 3.2		w = 2.8	A1
16 + 2w = 21.6		5b + 5.6 = 21.6	
w = 2.8		b = 3.2	A1

32.	x 20p coins and y 50p coins	
	x + y = 60	MA1
	20x + 50y = 2280	MA1
	2x + 5y = 228	
	2x + 2y = 120 or $5x + 5y = 300$	M1
	3y = 108 or $3x = 72$	
	y = 36 or $x = 24$	A1
	x = 24 or $y = 36$	A1
	(24 are 20p and 36 are 50p)	

33.	20x + 12y = 322 (Follow through all parts for numerical errors)	
	16x + 10y = 262 (both equations correct)	MA1
	100x + 60y = 1610 (1st equation × 5)	MA1
	96x + 60y = 1572 (2nd equation × 6)	MA1
	4x = 38, $x = 9.50$ (solving for <i>x</i>)	MA1
	190 + 12y = 322 $y = 11$ (substituting for y)	MA1
	alternative (after 2 correct equations)	
	80x + 48y = 1288 (1st equation × 4)	MA1
	80x + 50y = 1310 (2nd equation × 5)	MA1
	2y = 22, y = 11 (solving for <i>y</i>)	MA1
	20x + 132 = 322 $x = 9.50$ (substituting for x) Correct answers with no simultaneous equations – no marks awarded	MA1

34.	(a) $5n-2$	A1 A1
	(b) 15th	A1