

St. Patrick's High School, Keady Mathematics Department

GCSE Mathematics Practice Booklet

M8

Topic 2 –Algebra l

Trial and Improvement
Direct Proportion
Simultaneous Equations
Changing the Subject
Inequalities
Indices

Section A - Non Calculator Questions / Mark Scheme Pages 1-63

Section B - Calculator Questions / Mark Scheme Pages 64-105

Sequences

Questions taken from CCEA Past Papers

Q1 Complete the boxes

$$\frac{2xy}{3y} \times \frac{\boxed{}}{\boxed{}} = \frac{4xy^2}{9xy}$$

Q2 Make v the subject of 2s = (u + v)t

Answer
$$v =$$
____[2]

[2]

Q3 Make *m* the subject of the formula H = mr + s

Answer
$$m = ____[2]$$

Q4

Rewrite

$$4 + x = 9 - y$$

4 + x = 9 - y to make y the subject.

Give your answer in its simplest form.

Answer	v =	[2
7 1115 W C1	<i>y</i>	4

Q5 Rearrange v = u + at to make a the subject.

Answer
$$a =$$
 [2]

Q6	Solve	4n + 3 > 28
_		

Answer	[2]
	r_1

Q7 (a) Solve the inequality
$$6y + 5 \ge 2$$

(b) Write down the smallest **integer** value of y which satisfies the inequality $6y + 5 \ge 2$

Answer
$$y =$$
____[1]

Q8	

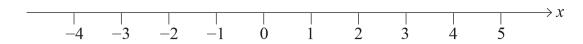
Solve

8x < 6x + 7

Answer _____ [2]

Q9 A rectangle has a length of 3x cm and a width of (x + 5) cm.

The length is greater than the width.

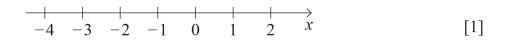

(a) Write this information as an inequality in x.

Answer _____ [1]

(b) (i) Solve the inequality.

Answer _____ [1]

(ii) Show your answer on the number line below.


[1]

Q10

(a) Solve $2x - 1 \le -5$

Answer	[2]

(b) Show your solution on the number line.

Q11 Solve

 $4 < 3n \le 18$ for integer *n*

Answer _____ [3]

Q12	List the values of the integer n which satisfy	the inequality	
	$-7 < 3n \le 6$		
		Answer	[3]
Q13	Solve the inequality $5x + 4 \le 7x - 5$		
		Answer	[2]

Q14	Solve $-9 \le 3y$	y < 6 where y is an integer.	
		Answer	[2]
_			
Q15	Solve		
		12-n > 4n-3	
		Answer	[2]
_			

Q10	Look	at the s	equence	e below				
	3	5	9	15	23			
	(a) V	Vhat is 1	the next	number	?			
							Answer_	_[1]
	, ,	-				ext number ea		_[1]
Q17	Write	down t	he next	two term	ns in the	sequence		
	23, 2	21, 17,	11, _					[2]

Q18	Here is a seque	ence of patterns n	nade with circles.		
	0	000	0 0 0 0 0		
	pattern 1	pattern 2	pattern 3		
	How many cir	cles are needed fo	or pattern 5?		
	Answer	because the	rule is		[2]
Q19	(a) What is th	the n^{th} term for the 12, 2	sequence? 24, 36, 48,		
	(b) What is th	the n^{th} term for the 13, 9,	sequence? 5, 1, -3,	Answer	[1]

Answer _____ [2]

Q20	The first four terms of a sequence are	
	3, 8, 13, 18,	
	(a) Write down the n^{th} term of the sequence.	
	Answer[2] (b) Which term of the sequence will equal 73?	
	Answer[1]	
Q21	Work out the n^{th} term of the sequence 6, 3, 0, -3,	
	Answer[2]	

	St. Patrick's High School, Keady
Q22	The first four terms of a sequence are
	2 7 12 17
	Write down an expression for the n^{th} term of the sequence.
	Answer [2]
_	

Q23 Each new number in a sequence is found using the rule multiply the previous number by 3 and then subtract 5

Find the next two numbers in this sequence.

2 , _____ , ____

[2]

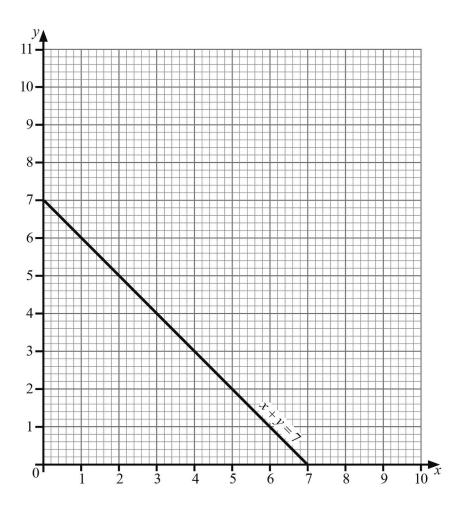
Q24	A sequence has n^{th} term $n^2 + 4$
	(a) Write down the first 3 terms of the sequence.
	Answer, [2]
	(b) Here are three sequences
	$n^3 + 2$ $3n + 1$ $4n - 1$
	The number 13 is a term in one of these. Which one? Explain your answer clearly.
	Answer
	because
Q25	The first three terms of a sequence are $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$
	Write down the n^{th} term.
	Answer [1]

Q26	A sequence is formed using the rule:	
	"Find the next term by adding the previous two terms"	
	Use this rule to complete the sequence below.	
	x, 4,,,	[1]
Q27	Find the <i>n</i> th term of the sequence	
	7, 4, 1, -2,	
	Answer n th term =	[2]

Q28

		CD1	·	C		C			
(a)	The	first	tour	terms	ot a	sec	uence	are

1, 4, 7, 10


What is the n^{th} term for this sequence?

Answer _____ [2]

$$\frac{1}{1}$$
, $\frac{4}{4}$, $\frac{9}{7}$, $\frac{16}{10}$

Answer	[2]
	1 –

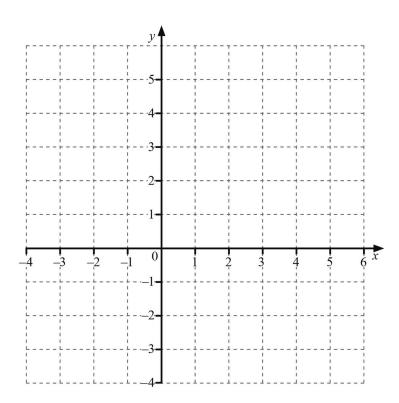
Q29 The line x + y = 7 is shown below.

(a) On the diagram illustrate the region represented by the inequalities

$$x + y \le 7$$
, $y \ge 1$, $y \le 5x + 1$

Mark the region with the letter R.

[2]

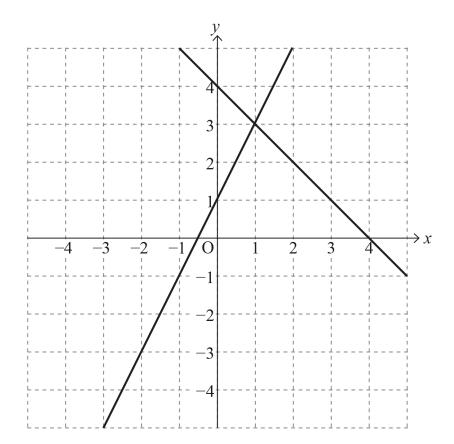

(b) In the region R, what is the greatest value of 2x + y?

_[2] Answer ____

- **Q30**
- (a) On the grid below use suitable shading and the letter R to show the region represented by the inequalities

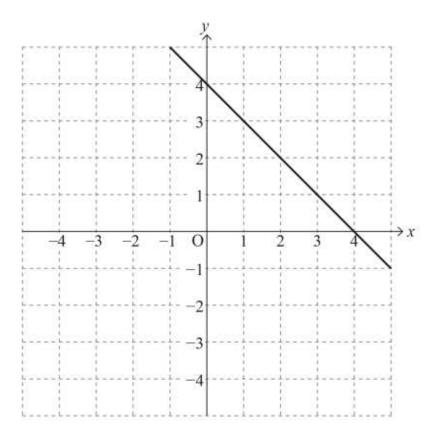
$$y \ge 4 - 2x$$

$$y \ge 2x$$



[3]

(b) In the region R, what is the maximum value of x + y?


Answer_____[1]

Q31 (a)

The lines y=2x+1 and x+y=4 have been drawn on the grid. By drawing another line on the grid above, indicate clearly by the letter R the region satisfying $y \ge 2x+1$ and $x+y \le 4$ and $x \ge -1$ [2]

By drawing more lines on the grid above, indicate clearly by the letter B the region satisfying $y \le 2x$ and $x + y \le 4$ and $y \ge 1$

[2]

032	_	
	N	3 7
	v.	<i>J</i> 2

Rewrite 3a - b = c(2 - a) to make a the subject.

Answer $a = ____ [3]$

Q33	Rearrange $p = 2q - 5r^2t$ to make r the subject of the formula.

Answer r = [3]

Rearrange $8(xy - 5) = 3y - 7x$ to make x the sub	oject.
---	--------

Answer x = [4]

$\frac{5-2n}{6+n}$

Answer	[4]
Allswei	[+

Q36 Make *b* the subject of 3(b+4) = a(5-2b)

Answer
$$b =$$
_____[4]

$\boldsymbol{\cap}$	27
v	J
•	

Make x the subject of the formula $y = \frac{b}{\sqrt{x}}$

Answer $x =$	[2]

Q38 Simplify

(a) $m^3 \times m^4$

Answer	٢1	
1 1115 // 41	1 -	

(b) $\frac{n^6}{n^3}$

Answer _____ [1]

(c) $\frac{r \times r^3}{r^6}$

Answer _____ [1]

Simplify each of the following	Q39	Simplify each of the following
--------------------------------	-----	--------------------------------

(a) $4p^3 \times 3p^4$

Answer _____ [1]

(b) $(q^2)^3 \div q^8$

Answer _____ [1]

- (a) Simplify
 - (i) $w^3 \times w^2$

Angwer	Г1	ı
Answer		L

(ii) $\frac{y^6}{y^2}$

A	Г17
Answer	

- **(b)** Work out the n^{th} term of the sequence
 - 7, 14, 21, 28, 35 ...

Answer	Γ1 ⁻
Allswei	1

- (c) Work out the value of
 - (i) 5^{-2}

Answer [1

(ii)
$$1^5 + 6^0$$

Answer _____ [1]

Q41	The height of a balloon, h , varies directly as the square root of its surface area, A . When the balloon's surface area is 81 its height is 12
	What is its height when its surface area is 144?

Answer _____ [3]

	St. Tutton 5 13	ingh sonosi, itaas	
Q42	T varies as the square of d		
	When $d = 0.3$, $T = 10.8$		
	(a) Express T in terms of d		
	Ar	nswer	[3]
	(b) Find a value of d for which $T = 30$	0	

Answer _____ [2]

Q43 Solve the simultaneous equations

$$3x - y = 7$$
 and $5x - 2y = 10$

A solution by trial and improvement will not be accepted.

Answer
$$x = _____ y = _____[3]$$

Q44	Solve $y = 1 - x$ and $x^2 + y^2 + x = 16$
-----	--

Answer _____[5]

Q45 Solve
$$x - 15 = 5y$$

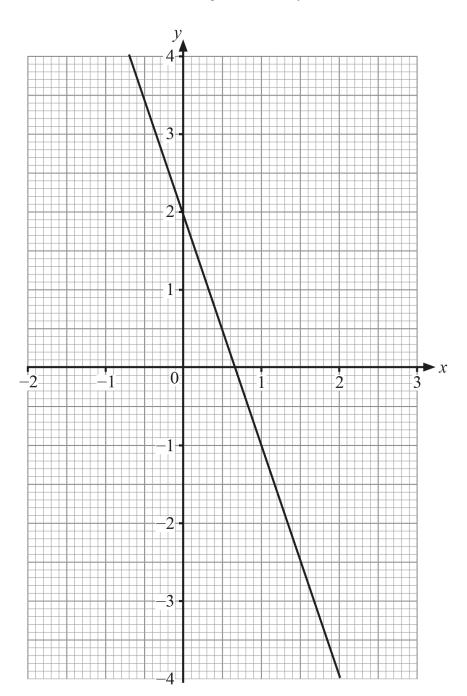
 $3x = -8y - 1$

Show all your working.
A solution by trial and improvement will not be accepted.

Answer $x = ____ y = ____ [4]$

Q46	Solve the	simultaneous	equations

$$x + 2y = -3$$
 and $x^2 - 2xy = 20$


Answer _____[7]

Q47 Solve the simultaneous equations

$$2x^2 + 3y^2 = 2$$
 and $x - y + 1 = 0$

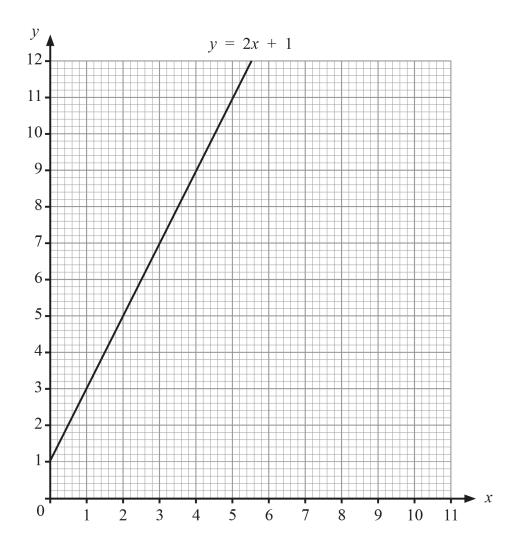
Answer ______[7]

Q48

By drawing a suitable line on the grid opposite solve the simultaneous equations

$$y = 2x - 2$$

$$y = -3x + 2$$


Answer
$$x = _____ y = ____ [4]$$

Q49

Use graphs to solve the simultaneous equations

$$y = 2x + 1$$
 and $y = 10 - x$

The graph of y = 2x + 1 has already been drawn for you.

Answer $x = ____$ and $y = ____$ [4]

50	Andy and Zoe have the same rates of pay.
	Andy worked 12 hours normal time and 8 hours overtime and earned £238
	Zoe worked 10 hours normal time and 15 hours overtime and earned £315
	Calculate the rates of pay for normal time and overtime.
	A solution by trial and improvement will not be accepted.
	Answer normal £ per hour; overtime £ per hour [5]

Q51	(a)	Given	$\sqrt{x+2} =$	3 <i>a</i>	find <i>x</i>	in terms	of a
V2I	(4)	GIVOII	V 30 . 2	Ju	IIII A	III terris	OI G

Answer $x = ____ [2]$

(b) Simplify $(\frac{1}{2}xy^3)^2$

Answer _____ [2]

Q52	(a) Y is directly proportional to the cube of X.		
	Y = 960 when X = 4		
	Express Y in terms of X.		
		Answer	[2]
	(b) Calculate the value of X when $Y = 405$		
	(2) 0 11 11 11 11 11 11 11 11 11 11 11 11 1		
		Answer	[2]
			[~]

3	The height of a balloon, h , varies directly as the square root of its surface area, A .
	When the balloon's surface area is 81 its height is 12
	What is its height when its surface area is 144?

Answer _____ [3]

Q54

A scale model of a car is made.

The length of the model is $\frac{1}{10}$ of the length of the car.

The volume of the petrol tank of the car is $50\,000\,\mathrm{cm}^3$

What is the volume of the petrol tank of the model?

Answer _____ cm³ [2]

Q55	(a)	Given $(2^n)^{\frac{2}{3}} = 16$, find the value of n .
_	` /	

Answer $n =$	[2]
I I I I I I I I I I	4

(b) The value of P = 81 and the value of Q = 32

Find the value of *m* given that $(P^{\frac{1}{2}} + Q^{\frac{4}{5}})^{-m} = \frac{1}{5}$

Answer m = [3]

•	•	_	
ı	ď	•	h
┖	,	_	v

Simplify $\sqrt[3]{(x^6y^9)^2} (xy)^{-2}$

[3]
[

Q57

Simplify the expressions

(a) $(4x^5y^3)(3x^2y^2)$

A	гол
Answer	

(b)
$$(2pq^2)^3$$

Answer _____ [2]

Q58

Simplify $\left(x^{-\frac{1}{2}}\right)\left(x^{5}\right)^{\frac{1}{2}}$

Answer _____ [2]

1.
$$\frac{2y}{3x}$$

$$2. 2s - ut = vt$$

$$v = \frac{2s - ut}{t}$$

or

$$\frac{2s}{t} = u + v$$

$$v = \frac{2s}{t} - u$$

3.
$$H - s = mr$$

$$m = \frac{H - s}{r}$$

4.
$$4 + y = 9 - x$$

A1

$$y = 9 - x - 4$$

$$y = 5 - x$$
 or $y = -x + 5$

A1

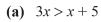
5.

$$at = v - u$$

$$a = \frac{v - u}{t}$$

$$n > \frac{25}{4} \left(6\frac{1}{4} \right)$$

(a)
$$6y \ge -3$$

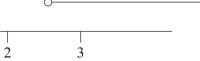

$$y \ge -\frac{1}{2}$$

MA1

$$x < \frac{7}{2}$$
 or 3.5

A1

9.


MA1

(b) (i)
$$2x > 5$$

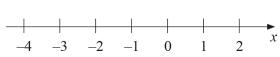
A1

A1

(ii)

10.

(a)
$$2x \le -5 + 1$$


MA1

$$2x \le -4$$

$$x \le -2$$

A1

(b) **-**

11.
$$\frac{4}{3} < n \le 6$$

M1

A2

12.
$$-\frac{7}{3} < n \le 2$$
 $-2, -1, 0, 1, 2$

MA1

MA2

13.
$$5 + 4 \le 7x - 5x (or 9 \le 2x)$$

 $x \ge 4.5 \ or \ x \ge 4\frac{1}{2} \ or \ x \ge \frac{9}{2}$

M1 A1

14.
$$-3 \le y < 2$$

-3, -2, -1, 0, 1

MA1 A1

15.	15 > 5n	MA1	
	n < 3	A1	
_			
16.	(a) 33	A1	
	(b) add an extra 2 each time	MA1	
_			
17.	3, -7	A1 A1	
_			
18.	17	MA1	
	You add 4 each time	MA1	

A1

(b)
$$-4n + 17 \text{ or } 17 - 4n$$

A1 A1

20.

(a)
$$5n-2$$

A1 A1

A1

21. 9-3n or -3n+9 (A1 for answer of -3n + any constant)

A2

22.

$$5n - 3$$

(A1 for
$$5n + d$$
, $d \neq -3$)

$$2 \times 3 - 5 = 1$$
 MA1 $1 \times 3 - 5 = -2$ MA1

(a) 5, 8, 13

[A1 for any 2 correct] A2

(b)
$$3n + 1$$
 because $3 \times 4 + 1 = 13$

A1 A1

Alternative solution

$$3n + 1$$
 A1 because there is no n value such that $n^3 + 2 = 13$ or such that $4n - 1 = 13$ A1

25.

$$\frac{n}{n+1}$$

A1

26.

$$x + 4$$
, $x + 8$, $2x + 12$

$$-3n + 10$$

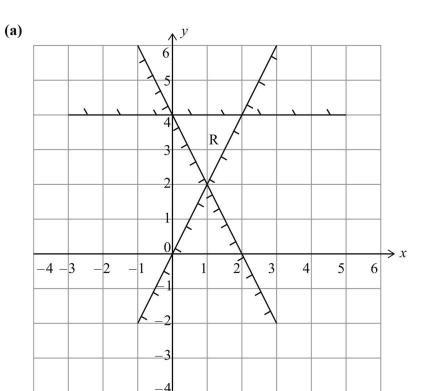
A2

(A1 for -3n + d for any value of d except 10)

28.

(a) 3n-2Allow A1 for $3n + c(c \neq -2)$ A1 A1

(b) $\frac{n^2}{3n-2}$


M1 A1

29.

(a) y = 5x + 1 and y = 1 drawn plus an attempt at shading a region Region R correct

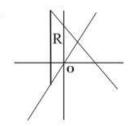
MA1 A1

(b) 13 (Allow A1 for (6, 1) identified)

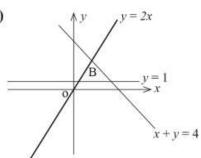
Each line and appropriate shading

MA1 MA1 MA1

(b) 6


- 31.
- (a) line x = -1 drawn, correct triangle indicated

MA1 A1


(b) lines y = 2x and y = 1, correct triangle indicated

MA1 A1

(a)

(b)

32.

$$3a - b = 2c - ac$$

$$3a + ac = 2c + b$$

$$a(3 + c) = 2c + b$$

$$a = \frac{2c + b}{3 + c}$$

MA1

MA1

33.
$$5x^2$$

$$5r^2t = 2q - p$$

$$r^2 = \frac{2q - p}{5t}$$

$$r = \sqrt{\frac{2q - p}{5t}}$$

$$8xy - 40 = 3y - 7x$$
 MA1
 $8xy + 7x = 3y + 40$ MA1
 $x(8y + 7) = 3y + 40$ MA1
 $x = \frac{3y + 40}{8y + 7}$ A1

$$6H + Hn = 5 - 2n$$
 MA1
 $Hn + 2n = 5 - 6H$ MA1
 $n(H + 2) = 5 - 6H$ MA1
 $n = \frac{5 - 6H}{H + 2}$ A1

36.
$$3b + 12 = 5a - 2ab$$
 MA1 $2ab + 3b = 5a - 12$ MA1 $b(2a + 3) = 5a - 12$ MA1 $b = \frac{5a - 12}{2a + 3}$ A1

$$37. \qquad \sqrt{x} = \frac{b}{y}$$

M1

$$x = \frac{b^2}{y^2} \quad \text{or} \quad x = \left(\frac{b}{y}\right)^2$$

A1

Alternative

$$y^2 = \frac{b^2}{x}$$

$$xy^2 = b^2$$

M1

$$x = \frac{b^2}{y^2}$$

A1

38.

(a)
$$m^7$$

A1

(b)
$$n^3$$

A1

(c)
$$r^{-2}$$
 or $\frac{1}{r^2}$

A1

39. **(a)**
$$12p^7$$

A1

(b)
$$\frac{1}{q^2}$$
 or q^{-2}

(a) (i)
$$w^5$$

A1

A1

A1

(c) (i)
$$\frac{1}{25}$$
 or 0.04

A1

(ii)
$$1+1=2$$

A1

41.

$$h = k\sqrt{A}$$

M1

$$12 = k\sqrt{81}$$

$$k = \frac{4}{3}$$

A1

$$h = \frac{4}{3} \sqrt{144} = 16$$

(a)
$$T = kd^2$$
 MA1

$$10.8 = 0.09 \, k, \, k = 120$$
 MA1

$$T = 120 d^2$$

(b)
$$30 = 120 d^2$$
 MA1

$$d = 0.5 \text{ (accept } -0.5)$$

44.
$$x^{2} + (1 - x)^{2} + x = 16$$

$$2x^{2} - x - 15 = 0$$

$$(2x + 5)(x - 3)$$

$$x = -\frac{5}{2}x = 3$$

$$y = \frac{7}{2} \quad y = -2$$
MA1

$$x - 5y = 15$$

$$3x + 8y = -1$$

$$3x - 15y = 45$$

$$3x + 8y = -1$$

$$-23y = 46$$

$$y = -2$$
A1
$$x = 5$$
A1

46.
$$x = -3 - 2y$$

$$(-3 - 2y)^2 - 2(-3 - 2y)y = 20$$

$$9 + 12y + 4y^2 + 6y + 4y^2 = 20$$

$$8y^2 + 18y - 11 = 0$$

$$(4y + 11)(2y - 1)$$

$$y = \frac{1}{2} \text{ or } -\frac{11}{4}$$

$$x = -4 \text{ or } \frac{5}{2}$$
MA1
MA1
MA1

47.
$$2x^{2} + 3(x+1)^{2} = 2 \qquad \text{or} \qquad 2(y-1)^{2} + 3y^{2} = 2 \qquad \text{MA2}$$

$$2x^{2} + 3(x^{2} + 2x + 1) = 2 \qquad 2(y^{2} - 2y + 1) + 3y^{2} = 2 \qquad \text{MA1}$$

$$5x^{2} + 6x + 1 = 0 \qquad 5y^{2} - 4y = 0 \qquad \text{MA1}$$

$$(5x + 1)(x + 1) = 0 \qquad y(5y - 4) = 0 \qquad \text{MA1}$$

$$x = -\frac{1}{5} \text{ and } x = -1 \qquad y = 0 \text{ and } y = \frac{4}{5} \qquad \text{MA1}$$

$$y = \frac{4}{5} \text{ and } y = 0 \qquad x = -1 \text{ and } y = -\frac{1}{5} \qquad \text{MA1}$$

M1 A1

$$x = 0.8$$
 $y = -0.4$ A1 A1

$$x = 0.8$$
 $y = -0.4$ A1 A1

49. Line
$$x + y = 10$$
 passes through points (0, 10) and (10, 0) M1 A1 $x = 3$ and $y = 7$ A1 A1

50.
$$12x + 8y = 238$$
 MA1
$$10x + 15y = 315$$
 MA1
$$120x + 80y = 2380$$
 MA1
$$120x + 180y = 3780$$
 MA1
$$100y = 1400; y = 14$$
 A1
$$x = 10.50$$
 A1

(a)
$$x + 2 = 9a^2$$

 $x = 9a^2 - 2$

M1 A1

(b)
$$\frac{1}{4} x^2 y^6$$

A2 (A1 for two parts correct)

52.

(a)
$$960 = k \times 64$$

 $k = 15$ hence $Y = 15X^3$

MA1 MA1

(b)
$$\frac{405}{15} = X^3$$
 $X = 3$

MA1 A1

53.

$$h = k\sqrt{A}$$

M1

$$12 = k\sqrt{81}$$

$$k = \frac{4}{3}$$

A1

$$h = \frac{4}{3} \sqrt{144} = 16$$

$$\frac{1}{1000} \times 50000$$
 M1

55.

(a)
$$2^{\frac{2}{3}n} = 2^4$$
 MA1
 $\frac{2}{3}n = 4$ $n = 6$ A1
(b) $(9+16)^{-m} = \frac{1}{5}$ A1
 $5^{-2m} = 5^{-1}$ MA1

(b)
$$(9+16)^{-m} = \frac{1}{5}$$
 A1
 $5^{-2m} = 5^{-1}$ MA1
 $m = \frac{1}{2}$

56.

$$x^4y^6 \text{ seen}$$
 MA1
$$x^2y^4$$
 A1 A1

(a)
$$12x^7y^5$$
 allow 1 for only 1 error A2
(b) $8p^3q^6$ allow 1 for only 1 error A2

58. x^2 Allow one mark for $\frac{5}{2}$ seen

Q 1	A solution to the equation $x^3 - 4x = 26$ lies between 3 and 4
	Use trial and improvement to solve this equation.
	Give your answer correct to 1 decimal place.
	Show each stage of your working.

x	x^3-4x	

Answer $x =$	[3]

Q2 Use the method of trial and improvement to solve the equation

$$x^3 - 6x = 12$$

Give your answer correct to 1 decimal place.

Show all your working.

x	x^3-6x	

Answer $x = ___ [4]$

Use trial and improvement to solve this equation.

Give your answer correct to 1 decimal place.

Show each stage of your working.

x	$x^{2} + 3x$	

Answer x = [3]

A solution to the equation $3x^2 + x = 67$ lies between x = 4 and x = 5 Use trial and improvement to solve this equation. Give your answer correct to 1 decimal place. Show all your working.

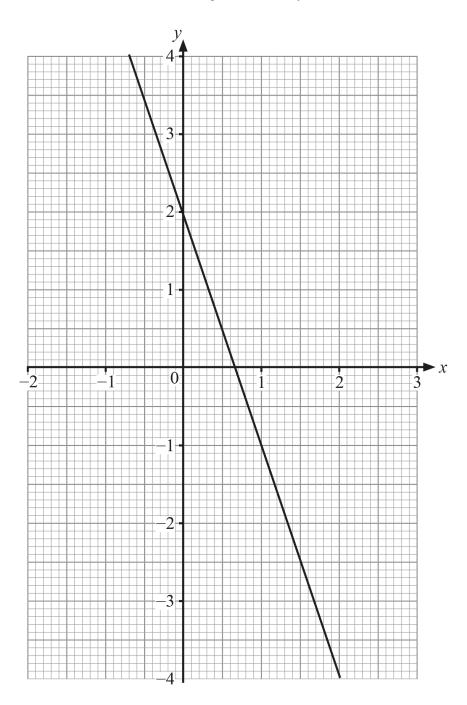
x	$3x^2 + x$	

Answer x = [3]

Q5 The equation $x^3 + 4x^2 = 100$ has a solution between 1 and 5 Use a trial and improvement method to find this solution. Give your answer correct to one decimal place. You must show all your working.

Answer $x = ____[4]$

		St. Patrick's High School, Keady	
Q6	(a)	Show that $20x - x^3 = 1$ has a solution between 4 and 5	
			[1]
	(b)	Use Trial and Improvement to find this solution correct to 1 decimal place.	
		Show all your working.	


Answer _____ [3]

Q7	Rewrite $3y + 1 = 5y - x$ to make x the subject.		
		Answer $x = $	[2]
Q8	Rearrange $y = 8x + 10$ to make x the subject.		
		Answer	[2]

Q9	(a) What is the n^{th} term for the sequence?
	12, 24, 36, 48,
	Answer [1]
	(b) What is the n^{th} term for the sequence?
	13, 9, 5, 1, –3,
	Answer [2]
Q10	Solve
	$4 < 3n \le 18$ for integer n
	Answer [3]

Q11	Solve the inequality $5x + 4 \le 7x - 5$		
		Answer	[2]
Q12	Solve $-9 \le 3y < 6$ where y is an integer.		
	Answer		[2]

By drawing a suitable line on the grid opposite solve the simultaneous equations

	y = 2x - 2 $y = -3x + 2$		
	Answer $x = $	y =	[4]
Q14	 (a) Y is directly proportional to the cube of Y = 960 when X = 4 Express Y in terms of X. 	X.	
	(b) Calculate the value of X when $Y = 405$	Answer	[2]
		Answer	[2]

Q15	The time (T) of swing of a pendulum varies as the square root of the length (L) of the pendulum.	
	When $T = 1.8$ seconds the length of the pendulum is	0.81 m.
	(a) Find the formula for T in terms of L.	
		Answer $T = $ [3]
		7 mswer 1 –[3]
	(b) Use your formula to find T when $L = 1.21 \text{ m}$.	
		Answer seconds [1]
	(c) Find the value of L for which the time of swing	is 0.5 seconds.
		Answer m [1]

Q16	s is directly proportional to the square of v
-----	---

When v = 20, s = 250

Express s in terms of v.

Angwar	Г	2
Answer	П	J

Q17	T varies as the square of d		
	When $d = 0.3$, $T = 10.8$		
	(a) Express T in terms of d		
		Answer	[3]

(b) Find a value of d for which T = 30

Answer _____ [2]

		St. Patrick's High School, Kead	dy	
Q18	Simplify			
	(a) $m^3 \times m^4$			
			Answer	[1]
	(b) $\frac{n^6}{n^3}$			
			Answer	[1]
	(c) $\frac{r \times r^3}{r^6}$			
			Answer	[1]
Q19	Simplify $4x^3y^5 \times 3x^2y$			

Answer _____ [2]

Q20

Simplify

 $t^3 \times t^8$

Answer _____[1]

 $(t^2)^3$

Answer _____ [1]

 $\frac{t^{-3}}{t^2}$

Answer _____ [1]

Q21	Solve the simultaneous equations	5x + 2y = 19
		4x - 3y = 29

A solution by trial and improvement will not be accepted.

Q22 Solve
$$x - 15 = 5y$$

 $3x = -8y - 1$

Show all your working.
A solution by trial and improvement will not be accepted.

Answer $x = ____ y = ____ [4]$

	St. Patrick's High School, Keady	
Q23	The total weight of 5 brown and 2 white eggs was 21.6 g.	
	The total weight of 3 brown and 5 white eggs was 23.6 g.	
	Write down two simultaneous equations and solve them to find the weight of a egg and the weight of a white egg.	brown
	You may assume that all brown eggs have the same weight and all white eggs have weight.	nave the
	Show all your working.	
	Answer Brown egg weighs	g
	White egg weighs	_ g [5]

Q24	A bag contains 60 coins.	
	Each coin in the bag is either a 20p coin or a 50p coin.	
	The total value of the coins in the bag is £22.80	
	Work out how many of each coin is in the bag.	
	A solution by trial and improvement will not be accepted.	
	Answer	20p coins
		50p coins [5]

Q25	John earns £ x per hour on Fridays and £ y per hour on Saturdays.
	In March he worked 20 hours on Fridays, 12 hours on Saturdays and earned £322
	In April he worked 16 hours on Fridays, 10 hours on Saturdays and earned £262
	Use simultaneous equations to find the values of x and y .

Answer $x = ______$ [5]

Q26	The first four terms of a sequence are
	3, 8, 13, 18,
	(a) Write down the n^{th} term of the sequence.
	Answer [2]
	(b) Which term of the sequence will equal 73?

Answer _____ [1]

Q27	P is inversely proportional to the square of Q. P = 6 when $Q = 3$		
	(a) Express P in terms of Q.		
	Answer [2]		
	(b) Hence		
	(i) find the value of P when $Q = 4$		
	Answer[1]		
	(ii) find the value of Q when P = 24		
	(ii) That the value of Q when 1 24		
	Answer [2]		

Q28	The force, F newtons, between two particles is inversely proportional to the square of the distance, d mm, between them. When the particles are 4 mm apart the force between them is 12.5 newtons. How far apart are the particles when the force between them is 3.125 newtons?
	Answer mm [5]

A scientist collected the following data from an experiment. **Q29**

d	4	6
W	9	4

The scientist was unsure as to the correct formula linking the variables d and W.

He tried these three possible formulae:

- A $W = kd^2$
- B $W = \frac{k}{d^2}$
- C $W = \frac{k}{d}$

(a)	Explain clearly why formula A could not be correct.

[1]

	Formula	and k =	[3]
c) Hence find the value of			
(i) W when $d = 12$			
		Answer	[1]
(ii) d when $W = 0.04$			
		Answer_	[1]
		Allswei	Li

Q30	Solve	y = x + 3	and	$x^2 + y^2 =$	= 14
_		$\mathbf{y} = \lambda \cdot \mathbf{J}$	and	λ V -	

Give your answers to 2 decimal places.

Answer [7]

Q31	Solve the simultaneous equations	y = 3x - 1
		$3x^2 + 2y^2 = 35$

Answer _____ [7]

$$y^2 = 6x - 23$$
$$y = x - 3$$

Show all your work.
A solution by trial and improvement will not be accepted.

Answer	Γ.5.
Allswei	1)

Q33	A customer bought a number of toys all at the same price. In total she spent £60
	If the price of each toy had been £1 more she could have bought 16 less toys for £60
	Find the price paid for each toy.

A method of trial and improvement will not be accepted.

Answer $\pounds_{_}$		_[7]

1.
$$x = 3.5 \rightarrow 28.875$$
 and $x = 3.4 \rightarrow 25.704$ MA1 $x = 3.45 \rightarrow 27.263625$ MA1 $x = 3.4$ MA1

2.
$$3^{3} - 6 \times 3 = 9$$

 $4^{3} - 6 \times 4 = 40$ MA1
 $3.1^{3} - 6 \times 3.1 = 11.191$
 $3.2^{3} - 6 \times 3.2 = 13.568$ MA1
 $3.15^{3} - 6 \times 3.15 = 12.355875$ MA1
Ans = 3.1

3.
$$x = 2.6$$
 14.56
 $x = 2.7$ 15.39 MA1
 $x = 2.65$ 14.9725 MA1
 $x = 2.7$

St. Patrick's High School, Keady

4. x = 4.5 65.25

x = 4.6 68.08 MA1

x = 4.55 66.6575 MA1

x = 4.6 A1

5.

х	$x^3 + 4x^2$	Comment
3.5	91.875	too low
3.6	98.496	too low
3.7	105.413	too high
3.65	101.917125	too high

between 3 and 4 MA1
between 3.6 and 3.7 MA1
Using 3.65 MA1
3.6 A1

6. (a) $20 \times 4 - 64 = 16$ and $20 \times 5 - 125 = -25$

MA1

(b) *x*

 $20x - x^3$

4.5

-1.125

(too small)

4.4

2.816

(too big)

MA1

4.45

0.878875

(too small)

MA1

Answer 4.4

A1

7. x = 5y - 3y - 1

MA1

x = 2y - 1

A1

8. y-10 = 8x 8x = y-10 or $x = \frac{y-10}{8}$

A1

$$\frac{y-10}{8} = x$$

$$c = \frac{y-10}{9}$$

A1

(a) 12*n*

A1

(b) -4n + 17 or 17 - 4n

A1 A1

10.
$$\frac{4}{3}$$

$$\frac{4}{3} < n \le 6$$

M1

A2

11.
$$5+4 \le 7x - 5x (or 9 \le 2x)$$

 $x \ge 4.5 \ or \ x \ge 4\frac{1}{2} \ or \ x \ge \frac{9}{2}$

M1 A1

12.
$$-3 \le y < 2$$

-3, -2, -1, 0, 1

MA1 A1

13.

Correct line drawn

M1 A1

$$x = 0.8$$
 $y = -0.4$

A1 A1

Correct line drawn

M1 A1

$$x = 0.8$$
 $y = -0.4$

A1 A1

(a)
$$960 = k \times 64$$

 $k = 15$ hence $Y = 15X^3$

MA1 MA1

(b)
$$\frac{405}{15} = X^3$$
 $X = 3$

MA1 A1

15.

(a)
$$T = k\sqrt{L}$$

 $1.8 = k\sqrt{0.81}$
 $k = 2$
 $T = 2\sqrt{L}$

MA1

MA1 MA1

(b)
$$T = 2\sqrt{1.21} = 2.2$$

MA1

(c)
$$0.5 = 2\sqrt{L}$$

 $L = 0.0625 \left(\frac{1}{16}\right)$

MA1

16.

$$s = Kv^2$$

250 = K × 400, K = $\frac{5}{8}$

M1 A1

$$s = \frac{5}{8}v^2$$

(a)
$$T = kd^2$$

MA1

$$10.8 = 0.09 \, k, \, k = 120$$

MA1

$$T=120d^2$$

A1

(b)
$$30 = 120 d^2$$

MA1

$$d = 0.5$$
 (accept -0.5)

A1

18.

(a)
$$m^7$$

A1

(b)
$$n^3$$

A1

(c)
$$r^{-2}$$
 or $\frac{1}{r^2}$

A1

19. $12x^5y^6$ (A1 for 2 terms correct)

(a)
$$t^{11}$$

A1

A1

(c)
$$t^{-5}$$
 or $\frac{1}{t^5}$

A1

21.

$$15x + 6y = 57$$

 $8x - 6y = 58$
 $23x = 115 \Rightarrow x = 5$
 $25 + 2y = 19$

y = -3

or

$$20x + 8y = 76$$

 $20x - 15y = 145$
 $23y = -69 \Rightarrow y = -3$

M1 M1

$$5x - 6 = 19$$

A1

$$x = 5$$

A1

22.

$$x - 5y = 15$$
$$3x + 8y = -1$$

MA1

$$3x - 15y = 45$$
$$3x + 8y = -1$$

MA1

$$-23y = 46$$
$$y = -2$$

A1

$$x = 5$$

5b + 2w = 21.6			
3b + 5w = 23.6			MA1
25b + 10w = 108	or	15b + 25w = 118	MA1
6b + 10w = 47.2		15b + 6w = 64.8	MA1
19b = 60.8		19w = 53.2	
b = 3.2		w = 2.8	A1
16 + 2w = 21.6		5b + 5.6 = 21.6	
w = 2.8		b = 3.2	A1

x 20p coins and y 50p coins

$$x + y = 60$$

MA1

$$20x + 50y = 2280$$

MA1

$$2x + 5y = 228$$

$$2x + 2y = 120$$
 or $5x + 5y = 300$

M1

$$3y = 108$$
 or $3x = 72$

$$y = 36$$
 or $x = 24$

A1

$$x = 24$$
 or $y = 36$

A1

(24 are 20p and 36 are 50p)

25. 20x + 12y = 322 (Follow through all parts for numerical errors)

16x + 10y = 262 (both equations correct) MA1

100x + 60y = 1610 (1st equation × 5) MA1

96x + 60y = 1572 (2nd equation × 6) MA1

4x = 38, x = 9.50 (solving for x) MA1

190 + 12y = 322 y = 11 (substituting for y) MA1

alternative (after 2 correct equations)

80x + 48y = 1288 (1st equation × 4) MA1

80x + 50y = 1310 (2nd equation × 5) MA1

2y = 22, y = 11 (solving for y) MA1

20x + 132 = 322 x = 9.50 (substituting for x) MA1

Correct answers with no simultaneous equations – no marks awarded

26. **(a)** 5n-2

A1 A1

(b) 15th

(a)
$$P = \frac{k}{Q^2}$$
$$6 = \frac{k}{3^2}$$
$$k = 54$$

MA1

$$R = 54$$
$$P = \frac{54}{Q^2}$$

MA1

MA1

(ii)
$$24Q^2 = 54$$

MA1

$$Q = 1.5$$

A1

28.

$$F = \frac{k}{d^2}$$

$$12.5 = \frac{k}{16}$$

$$k = 200$$

$$F = \frac{200}{d^2} \Rightarrow 3.125 = \frac{200}{d^2}$$

$$d^2 = 64 \Rightarrow d = 8$$

M1

A1

MA1

M1 A1

29.

(a) As d increases W decreases so $W = kd^2$ is not possible

A1

(b) Show
$$W = \frac{k}{d}$$
 wrong
Show $W = \frac{k}{d^2}$ correct

MA1

k = 144

MA1 MA1

(c) (i)
$$w = 1$$

A1

(ii)
$$d = 60$$

$$x^{2} + (x+3)^{2} = 14$$
 MA1
 $2x^{2} + 6x - 5 = 0$ MA1
 $x = \frac{-6 \pm \sqrt{36 + 40}}{4}$ M1
 $x = 0.68$ or $x = -3.68$ A1 A1
 $y = 3.68$ or $y = -0.68$ A1 A1

$3x^2 + 2(3x - 1)^2 = 35$	MA1
$3x^2 + 2(9x^2 - 6x + 1) = 35$	MA1
$21x^2 - 12x - 33 = 0$ or $7x^2 - 4x - 11 = 0$	A1
3(7x-11)(x+1) = 0 or $(7x-11)(x+1) = 0$	MA2
$x = \frac{11}{7}$ or -1	MA1
$y = \frac{26}{7}$ or -4	MA1

32.	$(x-3)^2 = 6x - 23$	MA1
	$x^2 - 6x + 9 = 6x - 23$	
	$x^2 - 12x + 32 = 0$	MA1
	(x-4)(x-8)=0	MA1
	x = 4, x = 8	A1
	y = 1, y = 5	A1

Let
$$x =$$
 price of a toy, Let $y =$ number of toys bought
 $xy = 60$ $(x + 1)(y - 16) = 60$ C1

$$xy + y - 16x - 16 = xy$$

 $y = 16x + 16$ C1

$$x(16x+16) = 60$$

$$16x^{2} + 16x - 60 = 0$$

$$4x^{2} + 4x - 15 = 0$$

$$(2x+5)(2x-3)=0$$

$$x = -\frac{5}{2} \text{ or } \frac{3}{2}$$

Therefore answer = £1.50
$$C1$$

Alternative

$$\frac{60}{t} = \frac{60}{t+1} + 16 \qquad t = \text{cost of toy}$$

$$60(t+1) = 60t + 16t(t+1)$$

$$60t + 60 = 60t + 16t^{2} + 16t$$

$$4t^{2} + 4t - 15 = 0$$

$$(2t+5)(2t-3) = 0$$

$$t = \frac{-5}{2} \qquad t = \frac{3}{2} \tag{C1}$$