

St. Patrick's High School, Keady Mathematics Department

GCSE Mathematics Practice Booklet

M8

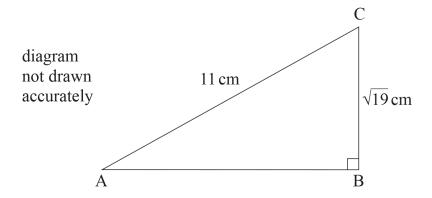
Topic 4 –Number 2

Standard Form

Surds

Recurring Decimals

Irrational Numbers


Growth and Decay

Section A – Non-Calculator Questions / Mark Scheme Pages 1-49

Section B – Calculator Questions / Mark Scheme Pages 50-56

Questions taken from CCEA Past Papers

ABC is a right-angled triangle.

Work out the length of AB, giving your answer as a surd.

Answer	cm	[3]

A tent in the shape of a cone has a perpendicular height of 7 m and a volume of $220\,\text{m}^3$

Using $\pi = \frac{22}{7}$, work out the base radius of this tent.

Write your answer in surd form.

$$m = 4.5 \times 10^7$$
 $n = 5 \times 10^{-3}$

Work out the value of $\frac{m}{n}$, giving your answer in standard form.

Answer	[2]
--------	-----

Q4

In standard form

$$(2 \times 10^{x}) \times (3 \times 10^{y}) = 6 \times 10^{11}$$

$$(3 \times 10^y) \div (2 \times 10^x) = 1.5 \times 10^3$$

Find the values of x and y.

Show your working.

Answer
$$x = ____ y = ___ [4]$$

$$A = 2.5 \times 10^8$$

$$B = 8 \times 10^{-2}$$

$$C = 5 \times 10^4$$

Work out the value of $\frac{AB}{C}$

Give your answer in standard form.

Answer _____[3]

Giving your answer in standard for the gas.	m, calculate the mass of one cubic ce	entimetre of
	Answer	g
A one gram bag of seed contains ha	alf a million seeds.	
	alf a million seeds. ulate the weight, in grams, of one see	d.
A one gram bag of seed contains hat If each seed weighs the same, calcudive your answer in standard form	ulate the weight, in grams, of one see	d.
If each seed weighs the same, calcu	ulate the weight, in grams, of one see	d.
If each seed weighs the same, calcu	ulate the weight, in grams, of one see	d.
If each seed weighs the same, calcu	ulate the weight, in grams, of one see	d.
If each seed weighs the same, calcu	ulate the weight, in grams, of one see	d.

Q8	The mass of Particle P has been recorded as $0.000\ 000176\ g$. The mass of Particle Q has been recorded as $14.9\times 10^{-7}\ g$. Which particle has the bigger mass and by how much? Give your answer in standard form.

Answer Particle ______ by _____ g [3]

α	`
Ų:	,

(a) Work out $6.543 \times 10^3 + 2.1 \times 10^{-1}$

Give your answer in standard form.

Answer ______[2]

(b) Given that $(3.6 \times 10^3) + (1.7 \times 10^x) = (y \times 10^5)$ where all three numbers in brackets are in standard form, find the values of x and y.

Answer $x = ______, y = _____[2]$

Q10 (a))	Work o	ut	and	simplify
---------	---	--------	----	-----	----------

$$(\sqrt{3}+\sqrt{27})^2$$

Answer	r	2
Answer	r [2

(b)
$$(6-\sqrt{5})(3+2\sqrt{5})=a+c\sqrt{5}$$

Find the values of a and c.

Answer
$$a = _____, c = _____[3]$$

Q11	Simplify $4\sqrt{3} + 2\sqrt{75} + \sqrt{27}$
~	Simplify $1\sqrt{3}$, $2\sqrt{13}$, $\sqrt{27}$

Answer	[2]

Q12 By expanding each bracket and simplifying, explain why

$$(3+\sqrt{5})^2-(2+\sqrt{2})^2>0$$

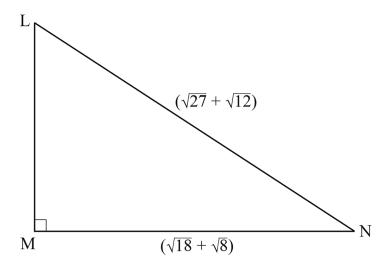
$$\frac{x\sqrt{2}}{5-\sqrt{5}} = 5 + \sqrt{5}$$

Work out the value of x.

Give your answer in the form $a\sqrt{b}$ where a and b are integers.

Answer	Γ 4

Q14	Rationalise the denominator of $\frac{54}{\sqrt{3}}$ and simplify	your answer.	
	You must show your working.		
		Answer	[2]


Q15 Expand
$$(2 + \sqrt{7})(3 - \sqrt{7})$$

Give your answer in the form $a + b\sqrt{7}$ where a and b are both integers.

Answer _____ [2]

Q16	Write	$\frac{\sqrt{125} - \sqrt{45}}{\sqrt{125} + \sqrt{45}}$	in its simplest form.
		$\sqrt{125} + \sqrt{45}$	r

Answer _____[3]

LMN is a right-angled triangle with angle $M = 90^{\circ}$

$$LN = (\sqrt{27} + \sqrt{12}) \, cm$$

$$MN = (\sqrt{18} + \sqrt{8}) \, cm$$

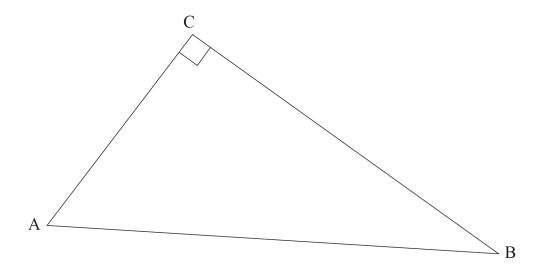
Show that LM = 5 cm.

(a) Rationalise the denominator of $\frac{28}{\sqrt{7}}$

Answer _____ [2]

(b) Show that $(\sqrt{45} - \sqrt{5})^2 = 20$

[2]


Q19 Circle the irrational numbers in the list

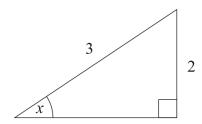
$$\frac{\pi^2}{4} \qquad \frac{\sqrt{27}}{\sqrt{2}} \qquad \frac{\sqrt{27}}{\sqrt{3}} \qquad \frac{\sqrt{27}}{\sqrt{4}}$$

$$\frac{\sqrt{27}}{\sqrt{4}}$$

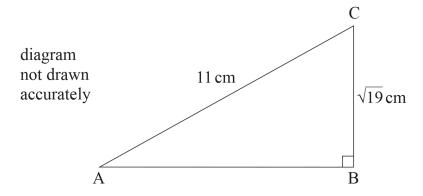
$$\sqrt[3]{27}$$

[3]

BC =
$$3\sqrt{5} - 1$$
 and AC = $3 + \sqrt{5}$


Find AB.

Give your answer in the form $p\sqrt{q}$


[5]

Work out

$$\frac{4}{\sqrt{3}} + \frac{\sqrt{3}(\sqrt{27} - 8)}{6}$$

Show that
$$\cos x + \tan x = \frac{11\sqrt{5}}{15}$$

ABC is a right-angled triangle.

Work out the length of AB, giving your answer as a surd.

Answer	cm [3	

024	ا المنام الا		a f 1 am a41a
Q24	A cuboid l	has sides	or rength

$$3 + 2\sqrt{3}$$
, $3 + \sqrt{3}$, $9 - \sqrt{3}$

Find the length of the space diagonal, giving your answer in the form $a\sqrt{b}$

Answer _____ [5]

 $\frac{3}{4\sqrt{5}}$ can be expressed in the form $a\sqrt{5}$

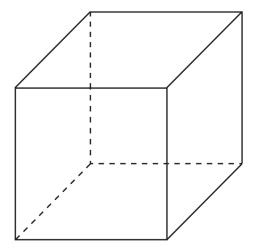
Find the value of a

Answer a = [2]

A tent in the shape of a cone has a perpendicular height of 7 m and a volume of $220\,\text{m}^3$

Using $\pi = \frac{22}{7}$, work out the base radius of this tent.

Write your answer in surd form.


[3

$$(2 + a\sqrt{3})^2 = b + 20\sqrt{3}$$

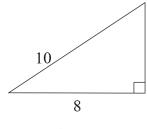
Work out the values of the integers a and b.

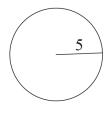
Show all your working clearly.

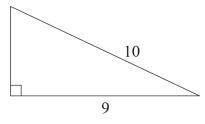
Answer
$$a = _____, b = _____[4]$$

The length of the space diagonal of a cube is 9 cm.

Find the length of a side of the cube, giving your answer in the form $a\sqrt{b}$


Answer	cm	[3]


Q29	(a) Write 0.000108 in standard for	orm.	
		Answer	[1]
	(b) Calculate $5.6 \times 10^5 \div 1.4 \times 10^5$	$)^2$	
		Answer	[1]
	(c) Change the recurring decimal	0.727272 into a fraction in its sim	nplest form.
		Answer	[2]
		Answer	


Q30	Write the recurring decimal 0.217 as a fraction		
		Answer	[2]
Q31	Write 0.318 as a fraction.		
		Answer	[2]

Q32	Express the recurring decimal $0.3\dot{7}\dot{2}$ as a fraction in its simplest form.	
	Answer	_[3]
Q33	Change the recurring decimal 0.561561 into a fraction in its simplest form.	
	Answer	_[2]

For each shape, decide whether the area is a rational or an irrational number. Give a reason for each answer.

Shape A

Shape B

Shape C

Area of Shape A is	because		
		[1]	
Area of Shape B is	because	[1]	
Area of Shape C is	because		
		[1]	

In each case decide if x, y or z is rational or irrational, giving a reason for your answer.

(a	x is the rac	dius of a	circle of	circumferen	$ce 12\pi$

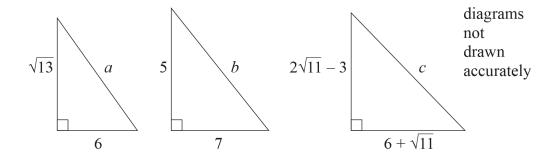
Answer x is	ŀ	ecause	ſ	17
			L	1

(b) y is the radius of a circle of area $9\pi^2$

Answer y is ______ because _____[1]

(c) z is the radius of a circle of area 8π

Answer z is _______ because ______ [1]


Q36 Change 0.0858585... into a fraction.

Answer	[2]
I IIIS VV CI	~

Q37 A circle of radius r cm has circumference C cm and area A cm² Circle whether each value is rational or irrational in the table.

r	C	A
$\frac{3}{\pi}$	rational / irrational	rational / irrational
$\sqrt{\frac{3}{\pi}}$	rational / irrational	rational / irrational
$3\sqrt{\pi}$	rational / irrational	rational / irrational

[4]

For each of the right-angled triangles above, state whether the length of the hypotenuse is rational or irrational, giving reasons for your answers.

Answer	<i>a</i> is	because	
	<i>b</i> is	because	
	<i>c</i> is	because	
			[6]

Q39	Change	0.08181818181	into a fraction.
_	Change	0.00101010101	mio a machon.

Answer _____ [2]

A =
$$(7 - \sqrt{5})(7 + \sqrt{5})$$
 B = $[(7 - \sqrt{5}) - (7 + \sqrt{5})]^2$ C = $\frac{14\sqrt{10}}{7\sqrt{2}}$

Prove that only one of A, B, C is irrational.

Tom bought shares costing £4000

The value, V, of the shares depreciated by 0.05% each year.

Circle the formula which gives the value, V, of the shares after two years.

$$V = (4000 - 0.05)^2$$
 $V = 4000 (1.05)^2$

$$V = 4000 (0.9995)^2$$
 $V = 4000 (0.95)^2$ [1]

1.
$$AB^2 = 11^2 - (\sqrt{19})^2$$

M1

$$AB^2 = 102$$

A1

$$AB = \sqrt{102}$$

A1

2.

$$\frac{1}{3} \times \frac{22}{7} \times r^2 \times 7 = 220$$

MA1

$$r^2 = 30$$

MA1

$$r = \sqrt{30}$$

A1

3.
$$\frac{4.5 \times 10^7}{5 \times 10^{-3}} = 0.9 \times 10^{10}$$
$$9 \times 10^9$$

MA1

A1

4.

$$x + y = 11$$
 MA1

$$y - x = 3$$
 or $x = y - 3$ or $y = x + 3$

MA1

$$x = 4$$

$$y = 7$$

A1 A1

5.

$$\frac{20 \times 10^{6}}{5 \times 10^{4}}
= 4 \times 10^{2}$$
A1A1

6.
$$1.5 \times 10^4 \div 10^6$$

MA1

$$1.5 \times 10^{-2}$$

MA1

7.

$$\frac{1}{500000} = \frac{1}{5 \times 10^5}$$
 MA1

$$0.2\times10^{-5}$$

MA1

$$2 \times 10^{-6}$$

A1

8.	$14.9 \times 10^{-7} = 0.000\ 00149$	A1
	$0.000\ 00149 - 0.000\ 000176 = 0.000\ 001314$	MA1
	Q by 1.314×10^{-6}	A1
	or	

$$0.000\ 000176 = 1.76 \times 10^{-7}$$
 A1 $14.9 \times 10^{-7} - 1.76 \times 10^{-7} = 13.14 \times 10^{-7}$ MA1 Q by 1.314×10^{-6} A1

9. **(a)**
$$6543 + 0.21$$
 or 6543.21 MA1 6.54321×10^3 A1 **(b)** $x = 5$ A1 $y = 1.736$ A1

10. **(a)**
$$3 + 27 + 2\sqrt{81}$$
 or $(\sqrt{3} + 3\sqrt{3})^2 = (4\sqrt{3})^2$ MA1

48

A1

(b) $18 - 3\sqrt{5} + 12\sqrt{5} - 10$ MA1

 $a = 8$ A1

 $c = 9$

11.
$$4\sqrt{3} + 10\sqrt{3} + 3\sqrt{3}$$
 MA1 17 $\sqrt{3}$

12.
$$\begin{array}{c} 9+6\sqrt{5}+5-\left(4+4\sqrt{2}+2\right) & \text{C1} \\ 8+6\sqrt{5}-4\sqrt{2} & \text{C1} \\ \sqrt{2}<2, \text{so } 4\sqrt{2}<8, \text{so } 8+6\sqrt{5}-4\sqrt{2}>0 & \text{C1} \end{array}$$

Multiply both sides by
$$5 - \sqrt{5}$$

$$x\sqrt{2} = 20$$

$$x = \frac{20}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$x = \frac{20\sqrt{2}}{2} = 10\sqrt{2}$$
A1
A1

14.
$$\frac{54}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
 or $\frac{54\sqrt{3}}{3}$ M1 $18\sqrt{3}$

15.
$$6 - 2\sqrt{7} + 3\sqrt{7} - 7$$

MA1

$$-1 + \sqrt{7}$$

A1

16.
$$\frac{5\sqrt{5} - 3\sqrt{5}}{5\sqrt{5} + 3\sqrt{5}}$$
$$= \frac{2\sqrt{5}}{8\sqrt{5}}$$

MA1

A1

$$=\frac{1}{4}$$

(a)
$$\frac{28}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$$

A1

$$4\sqrt{7}$$

A1

(b)
$$(\sqrt{45} - \sqrt{5})^2 = 45 - 2\sqrt{225} + 5$$

M1

$$50 - 2 \times 15 =$$

$$50 - 30 = 20$$

A1

or Alternative

$$(\sqrt{45} - \sqrt{5})^2 = (3\sqrt{5} - \sqrt{5})^2 = (2\sqrt{5})^2$$

M1 A1

19.

1 mark each for 1st, 2nd, 4th circled, less one mark for each other circled

$$(3\sqrt{5}-1)^2 + (3+\sqrt{5})^2 = AB^2$$

$$9\sqrt{25} - 3\sqrt{5} - 3\sqrt{5} + 1 + 9 + 3\sqrt{5} + 3\sqrt{5} + \sqrt{25}$$

$$MA1$$

$$45 - 6\sqrt{5} + 1 + 9 + 5 + 6\sqrt{5} = AB^2$$

$$AB = \sqrt{60}$$

$$AB = 2\sqrt{15}$$

$$A1$$

$$\frac{4}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{\sqrt{3}(\sqrt{27} - 8)}{6}$$
M1
$$\frac{4\sqrt{3}}{3} + \frac{\sqrt{3}(\sqrt{27} - 8)}{6}$$
A1
$$\frac{4\sqrt{3}}{3} + \frac{9}{6} - \frac{8\sqrt{3}}{6}$$
MA1

 $\frac{3}{2}$ A1

Alternative

$$\frac{24 + 3(\sqrt{27} - 8)}{6\sqrt{3}}$$

$$\frac{3\sqrt{27}}{6\sqrt{3}}$$

$$\frac{3\sqrt{27}}{6\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$M1$$

$$\frac{27}{18} = \frac{3}{2}$$

$$A1$$

22. $3^{2}-2^{2}=5$ M1 $Base = \sqrt{5}$ A1 $Cos x = \frac{\sqrt{5}}{3} tan x = \frac{2}{\sqrt{5}}$ MA1 $\frac{\sqrt{5}}{3} + \frac{2\sqrt{5}}{5} = \frac{5\sqrt{5}}{15} + \frac{6\sqrt{5}}{15} = \frac{11\sqrt{5}}{15}$ M1 A1

$$AB^2 = 11^2 - (\sqrt{19})^2$$

M1

$$AB^2 = 102$$

A1

$$AB = \sqrt{102}$$

A1

24.
$$d^2 = (3 + 2\sqrt{3})^2 + (3 + \sqrt{3})^2 + (9 - \sqrt{3})^2$$

MA1

$$d^2 = 9 + 12\sqrt{3} + 12 + 9 + 6\sqrt{3} + 3 + 81 - 18\sqrt{3} + 3$$

MA2

$$d^2 = 117$$

MA1

$$d = 3\sqrt{13}$$

A1

$$\frac{3}{4\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$$

M1

$$=\frac{3\sqrt{5}}{20}$$

$$a = \frac{3}{20}$$

$$\frac{1}{3} \times \frac{22}{7} \times r^2 \times 7 = 220$$

$$mA1$$

$$r^2 = 30$$

$$mA1$$

$$r = \sqrt{30}$$

$$A1$$

$$4 + 4a\sqrt{3} + 3a^2 = b + 20\sqrt{3}$$
 M1A1
 $a = 5$ A1
 $b = 4 + 75 = 79$ A1

28.

$$x^{2} + x^{2} + x^{2} = 81$$

$$x^{2} = 27 \text{ so } x = \sqrt{27}$$

$$3\sqrt{3}$$
MA1

A1

(a)
$$1.08 \times 10^{-4}$$

A1

(b)
$$4 \times 10^3$$
 or 4000

A1

(c)
$$99x = 72$$

 $x = \frac{8}{11}$

MA1 A1

30.

$$99x = 21.5$$
 or $990x = 215$ or $9999x = 2171.5$

MA1

$$x = \frac{215}{990}$$
 or $\frac{43}{198}$ or $\frac{21715}{99990}$

A1

31.

$$100r = 31.8181818$$
$$-r = 0.3181818$$
$$99r = 31.5$$
$$r = \frac{315}{990} \left(\frac{7}{22}\right)$$

$$1000r = 318.181818$$
$$-10r = 3.181818$$
$$990r = 315$$
$$r = \frac{315}{990} \left(\frac{7}{22}\right)$$

MA1

32.
$$x = 0.3727272...$$

10x = 3.727272...

or

100x = 37.2727272...

1000x = 372.727272...

M1

990x = 369

or

99x = 36.9

$$\left(\text{or } x = \frac{369}{990}\right)$$

$$\left(\text{or } x = \frac{36.9}{99}\right)$$

A1

$$\frac{41}{110}$$

A1

33.

x = 0.561561...

1000x = 561.561...999x = 561

M1

$$x = \frac{187}{333}$$

A1

34.

A rational because area = 24

A1

B irrational because π irrational

A1 A1

C irrational because $\sqrt{19}$ irrational

(a) rational because 6 is rational

A1

(b) irrational because π or $3\sqrt{\pi}$ is irrational

A1

(c) irrational because $\sqrt{8}$ is irrational

A1

36.

100x = 8.5858585...

$$x = 0.085858...$$

$$99x = 8.5$$

$$\frac{85}{990}$$
 or $\frac{17}{198}$

M1 A1

37.

rational irrational

irrational rational

irrational irrational A4

allow A1 for 3 correct, A2 for 4 correct, A3 for 5 correct

38. correct use of Pythagoras' theorem

M1

a is rational because a = 7

A1

b is irrational because $b = \sqrt{74}$

A1

$$(2\sqrt{11} - 3)^2 + (6 + \sqrt{11})^2 = 44 - 12\sqrt{11} + 9 + 36 + 12\sqrt{11} + 11 = 100$$

M1 A1

c is rational because c = 10

A1

39.

x = 0.08181818181...

100x = 8.18181818181...

$$99x = 8.1$$

$$x = \frac{8.1}{99}$$

$$\frac{81}{990}$$
 or $\frac{9}{110}$

M1 A1

Alternative

10x = 0.8181818181...

1000x = 81.8181818181...

$$990x = 81$$

$$x = \frac{81}{990} \text{ or } \frac{9}{110}$$

$$(7 - \sqrt{5}) (7 + \sqrt{5}) = 7^2 - 5 = 44$$
 rational M1A1
$$[(7 - \sqrt{5}) - (7 + \sqrt{5})]^2 = (-2\sqrt{5})^2 = 20$$
 rational M1A1
$$\frac{14\sqrt{10}}{7\sqrt{5}} = 2\sqrt{5}$$
 irrational A1

41.

$$V = 4000 (0.9995)^2$$
 A1

Q1	A piece of land in the shape of a rectangle has a length of 8.3×10^6 centimetres and a width of 3.7×10^4 centimetres.			
	(a) Work out the area of the land, g	iving your answer in standard form	n.	
		Answer	cm ² [1]	
	(b) Work out the perimeter of the land, giving your answer in standard form.			
		Answer	cm [2]	

Answer
Answer

Q3
$$(2.5 \times 10^6) \times (4.8 \times 10^x) = A \times 10^4$$

Find the values of A and x

Answer
$$A = _____, x = ____[3]$$

Q4

(a) Calculate $(3.6 \times 10^5) \times (4.9 \times 10^{-4})$ giving your answer in standard form.

Answer _____ [1]

(b) $(2.5 \times 10^6) \times (4.8 \times 10^x) = A \times 10^4$

Find the values of A and x

Answer $A = _____, x = ____[3]$

Show clearly how one solution to the equation $2x - \frac{12}{x} = 0$ is $\sqrt{6}$

[2]

Q6

£1000 is invested at 2% per annum compound interest.

(a) Circle the formula which gives the value of the investment after n years.

$$V = (1000(1.2))^n$$
 $V = 1000(1.2)^n$ $V = (1000(1.02))^n$ $V = 1000(1.02)^n$

(b) Calculate the compound interest earned on £1000 invested at 2% per annum for 8 years.

Answer £	[2]

(a) £8000 is invested at 3% per annum compound interest.

Complete the formula for the amount £A after n years.

$$A = 8000(\underline{})^n [1]$$

(b) Calculate the total **interest** earned after 4 years.

Answer £ _____[2]

(a)
$$3.071 \times 10^{11}$$

A1

(b)
$$1.6674 \times 10^7$$
 (award A1 for 8.337×10^6) (adding 2 sides, not doubling)

A2

2.

(a)
$$3.85 \times 10^{-6}$$

A1

(b)
$$1.67 \times 10^{-7}$$

A1

3.
$$2.5 \times 4.8 = 12$$
 so $A = 1.2$

MA1

$$12 \times 10^{6+x} = 12000$$
 or $6+x+1=4$ or $\frac{12000}{2.5 \times 10^6} = 4.8 \times 10^{-3}$

MA1

so
$$x = -3$$

(a)
$$1.764 \times 10^2$$

A1

(b) $2.5 \times 4.8 = 12$ so A = 1.2

MA1

$$12 \times 10^{6+x} = 12000$$
 or $6+x+1=4$ or $\frac{12000}{2.5 \times 10^6} = 4.8 \times 10^{-3}$

MA1

so
$$x = -3$$

A1

5.

$$2x = \frac{12}{x}$$

$$2x^2 = 12$$
$$x^2 = 6$$
$$x = \sqrt{6}$$

MA1

$$x^2 = 6$$

$$x = \sqrt{\epsilon}$$

MA1

6.

(a)
$$V = 1000 (1.02)^n$$

A1

(b) $1000(1.02)^8 = 1171.65(9381)$

MA1

171.65 or 171.66

MA1

7.

(a) 1.03

A1

(b) $8000 (1.03)^4 = 9004.07$ 1004.07

MA1