

St. Patrick's High School, Keady Mathematics Department

GCSE Mathematics Practice Booklet

M8 Topic 5 – Algebra 2

Equation of a Circle Equation of tangents to a circle Simultaneous Equations (Graphically) Quadratic Graphs (including intersection with y= mx + c) Cubic, Reciprocal and exponential functions Conversion Graphs

<u>Section A – Non Calculator Questions / Mark Scheme Pages 1-41</u> <u>Section B – Calculator Questions / Mark Scheme Pages 42-58</u>

Questions taken from CCEA Past Papers

(a) The point (5, a) lies on the circle $x^2 + y^2 = 50$

Find the possible values of *a*.

Q1

Answer _____ [2]

(b) Find the equation of the tangent to the circle $x^2 + y^2 = 50$ at (-1, 7).

Answer _____ [3]

A (8	(-8, -6) and B $(-8, 6)$ are ends of the d	iameter AB of a	circle.	
(a)	What is the centre of the circle?			
			Answer	_[1]
(b)	What is the equation of the circle?			
		Answer		_[1]
(c)	What is the gradient of the diameter	AB?		

Answer [1]

(d) Find the equation of the tangent to the circle at A.

Q2

Answer [3]

(e) Write down the equations of the two tangents to this circle which are parallel to the y axis.

Answer	and	[2]
1 AMD IT WI	cirici	

(f) Find the points of intersection of these tangents with the tangent at A.

Answer	and	[2]
김 씨가 아무님 안 가 봐야.		

St. Patrick's High School, Keady

- **Q3** P (2, 3) lies on the circumference of the circle $x^2 + y^2 = a^2$
 - (a) Work out the value of *a*, giving your answer in surd form.

Answer _____ [2]

(b) Work out the equation of the tangent to this circle at P.

Answer [4]

(c) Work out the equation of the other tangent to this circle which is parallel to the tangent at P.

Answer [3]

Q4 P is a point on the circle $x^2 + y^2 = 169$

P also lies on the line y = 12

(a) Show that the radius to P has gradient $\pm \frac{12}{5}$

[3]

St. Patrick's High School, Keady

(b) Hence find the two possible equations for the tangent at P.

Answer ______, ____[3]

- **Q5** (-3, 4) is a point on the circle $x^2 + y^2 = 25$
 - (a) Show that the equation of the tangent to the circle at this point is 4y = 3x + 25

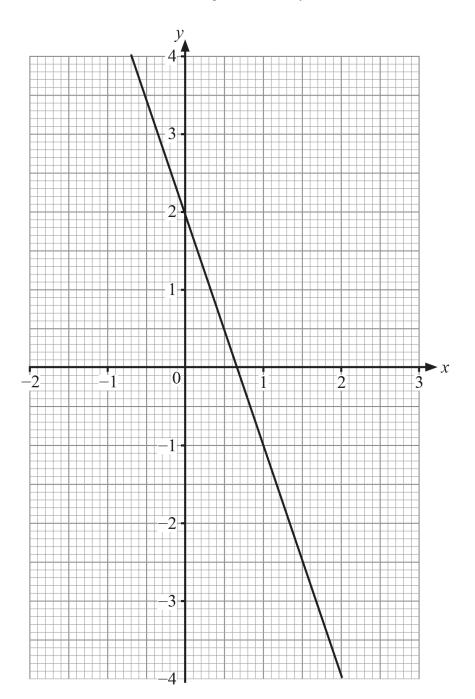
[4]

(b) Find the coordinates of the points of intersection of this tangent and the curve $y = x^2 + 6$

Answer _____ [6]

Q6 $y = \frac{3}{4}x + c$ is a tangent at the point P to the circle $x^2 + y^2 = 100$, centre O at (0,0).

(a) Write down the gradient of the radius OP.


Answer [1]

(b) Write down the equation of the line OP.

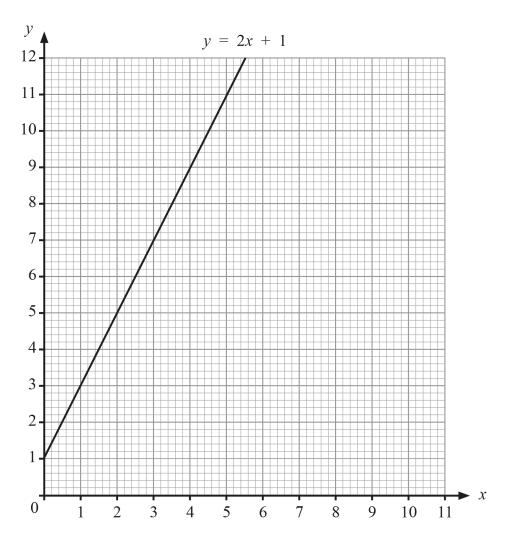
Answer [1]

(c) Hence find the possible coordinates of P.

Answer ______ or _____ [4]

St. Patrick's High School, Keady

By drawing a suitable line on the grid opposite solve the simultaneous equations


$$y = 2x - 2$$
$$y = -3x + 2$$

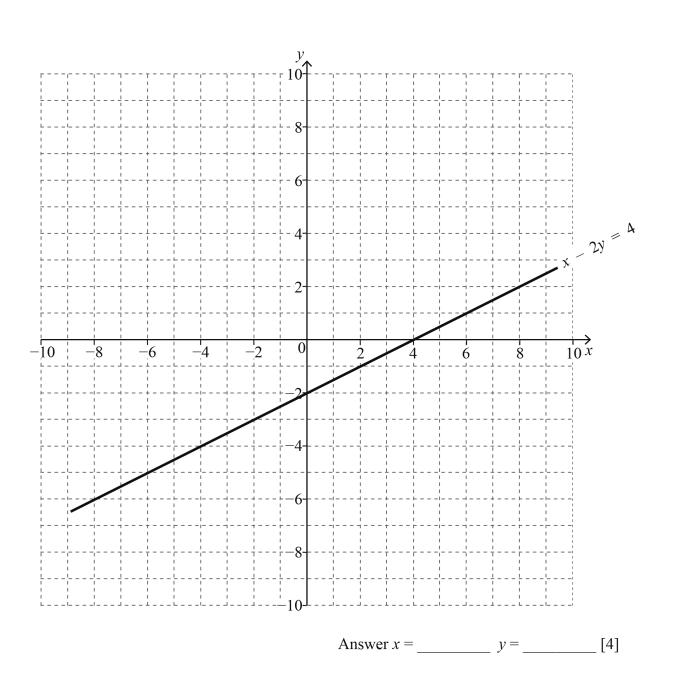
Answer x =_____ y =_____ [4]

Use graphs to solve the simultaneous equations

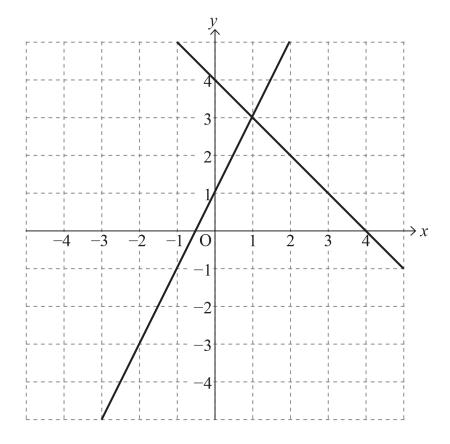
y = 2x + 1 and y = 10 - x

The graph of y = 2x + 1 has already been drawn for you.

Answer x =_____ and y =_____ [4]

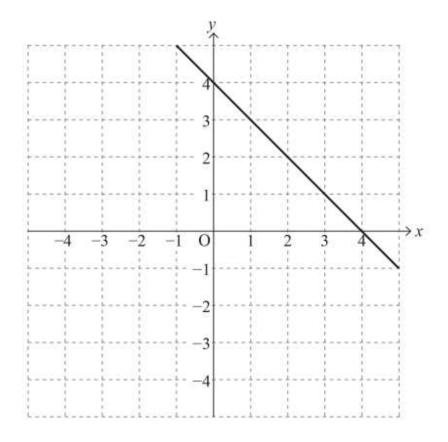

Q8

By draw


Q9

By drawing a suitable line on the grid, solve the simultaneous equations

$$x - 2y = 4$$
$$y = 3x + 3$$

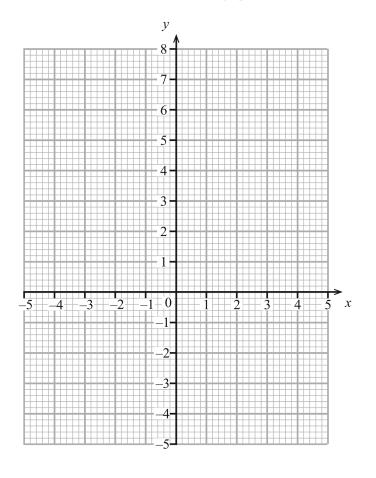


The lines y = 2x + 1 and x + y = 4 have been drawn on the grid. By drawing another line on the grid above, indicate clearly by the letter R the region satisfying $y \ge 2x + 1$ and $x + y \le 4$ and $x \ge -1$ [2]

(b)

By drawing more lines on the grid above, indicate clearly by the letter B

the region satisfying $y \le 2x$ and $x + y \le 4$ and $y \ge 1$ [2]


Q11 Part of the table for the graph of $y = x^2 - 2x - 3$ is shown below.

(a) Fill in the blanks in the table.

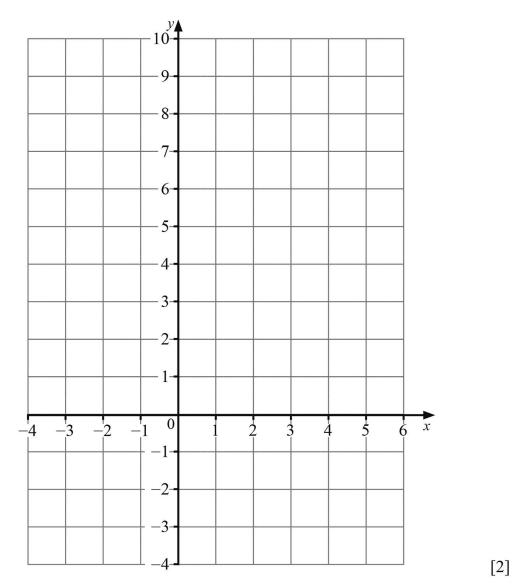
x	-2	-1	0	1	2	3	4
У	5	0			-3	0	5

[2]

(b) Use the values from the table to draw the graph.

[2]

(c) By drawing an appropriate line on the graph, solve the equation

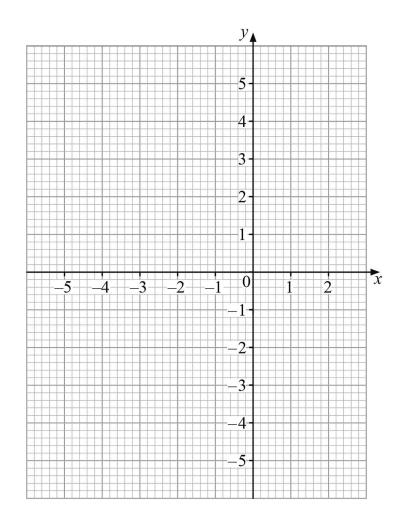

$$x^2 - 2x - 3 = x - 1$$

Answer x = [3]

- **Q12** Part of the table for the graph of $y = x^2 2x 1$ is shown below.
 - (a) Fill in the blanks in the table.

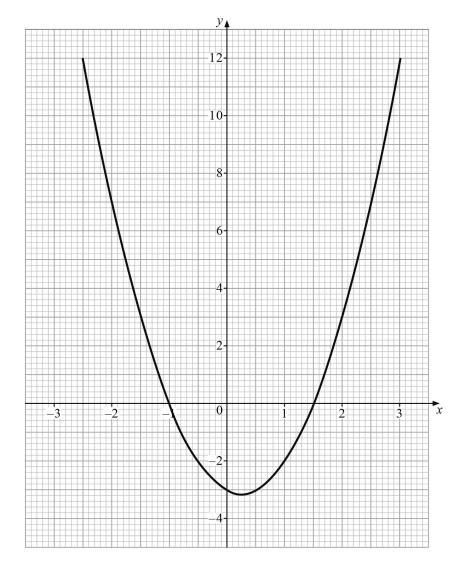
x	-2	-1	0	1	2	3	4
У	7			-2		2	7

(b) Use the values from the table to draw the graph of $y = x^2 - 2x - 1$ for $-2 \le x \le 4$



[2]

Q13 Here is a table of values for $y = 1 - 3x - x^2$

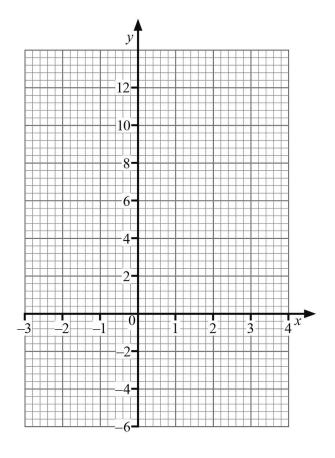

x	-4	-3	-2	-1	0	1
У	-3	1	3	3	1	-3

Use the table to draw the graph of $y = 1 - 3x - x^2$ on the grid below for values of x from -4 to 1

[2]

Q14 The graph of $y = 2x^2 - x - 3$ for $-2.5 \le x \le 3$ is shown below.

Use the graph to solve the equation

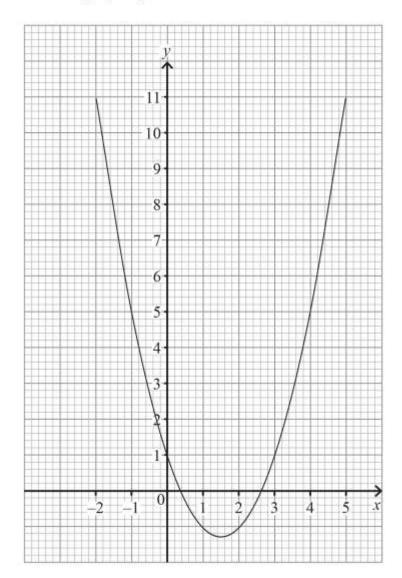

$$2x^2 - x - 3 = 3 - 1.5x$$

Answer *x* = _____ [3]

Q15 (a) Complete the table below for $y = 2x^2 - x - 3$

x	-2	-1	0	1	2	3
у		0	-3	-2	3	12
						[1]

(b) On the grid draw the graph of $y = 2x^2 - x - 3$ for x = -2 to x = 3


Q16 Tim has drawn the graph of $y = 2x^2 - x - 23$

What line should be drawn on the graph to solve the equation $x^2 - x - 12 = 0$?

Answer [2]

St. Patrick's High School, Keady

Q17 On the grid is drawn the graph of $y = x^2 - 3x + 1$

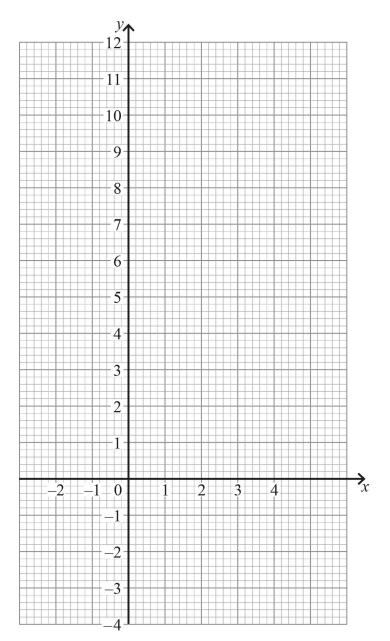
By drawing appropriate lines, use this graph to

(a) find the gradient of the curve at the point (2, -1)

Answer _____ [2]

(b) solve $x^2 - 3x - 3 = 0$

Answer *x* = _____ [2]


(c) solve $x^2 - 4x - 1 = 0$

Answer *x* = _____ [3]

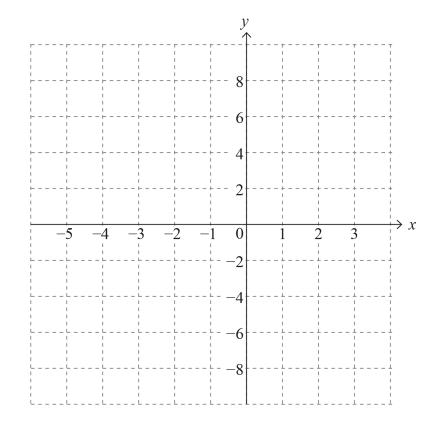
Q18 The following table gives some values for the quadratic equation $y = x^2 - 3x + 1$

x	-2	-1	0	1	2	3	4
У	11	5	1	-1	-1	1	5

(a) On the grid below, draw the graph of $y = x^2 - 3x + 1$ for values of x between -2 and 4

[2]

(b) Use your graph to estimate the values of x for which y = 3


Answer *x* = _____[2]

(a) Complete the table for $y = x^2 + 3x - 3$

x	-4	-3	-2	-1	0	1	2
у	1		-5	-5	-3	1	

[2]

(b) Draw the graph of
$$y = x^2 + 3x - 3$$
 from $x = -4$ to $x = 2$ [2]

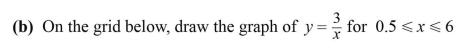
(c) Use your graph to estimate the solutions to $x^2 + 3x - 3 = 0$

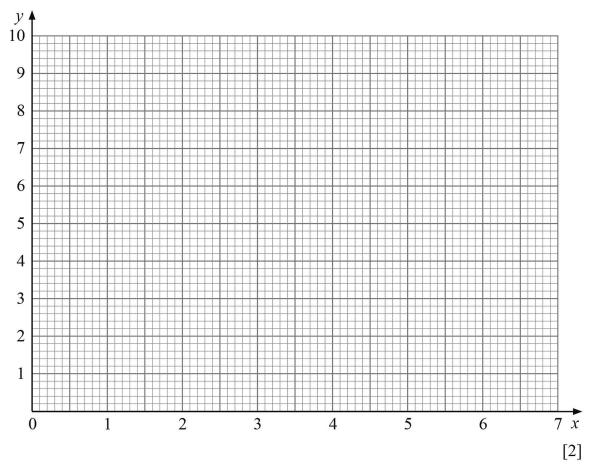
Answer [2]

(d) (i) By drawing a line on the grid, solve $x^2 + 3x - 3 = x + 1$

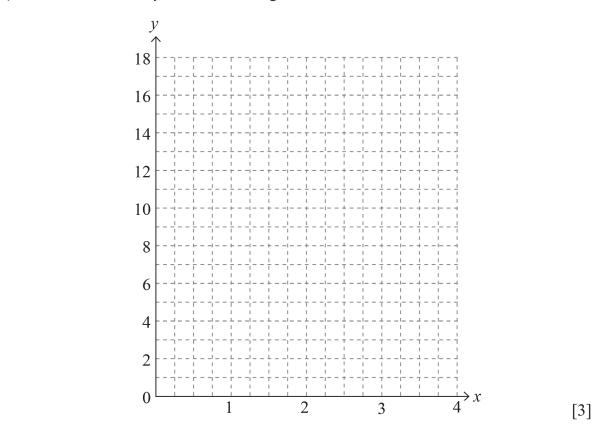
Answer [2]

(ii) Write down in simplest form the quadratic equation that has been solved in (i).


Answer [1]

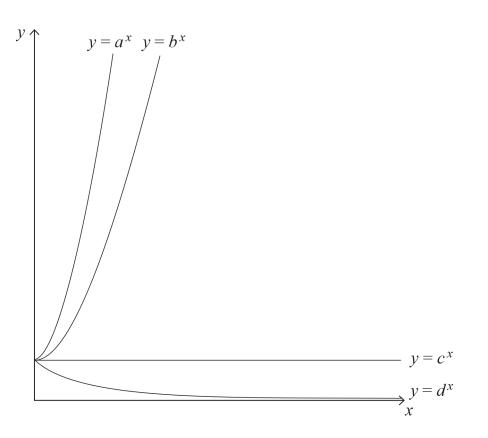

(e) What line would be drawn on the grid to solve $x^2 + 4x - 6 = 0$?

Answer [2]


Q20 (a) Complete the table of values for $y = \frac{3}{x}$

x	0.5	1	2	3	4	5	6
У		3		1			
						-	[2]

(a) Sketch the curve $y = 2^x$ on the grid below for $0 \le x \le 4$



(b) In (a), if $\pounds y$ represents the value of one share in an investment company x years after purchase, explain in words what is happening to the value.

Answer			[1]

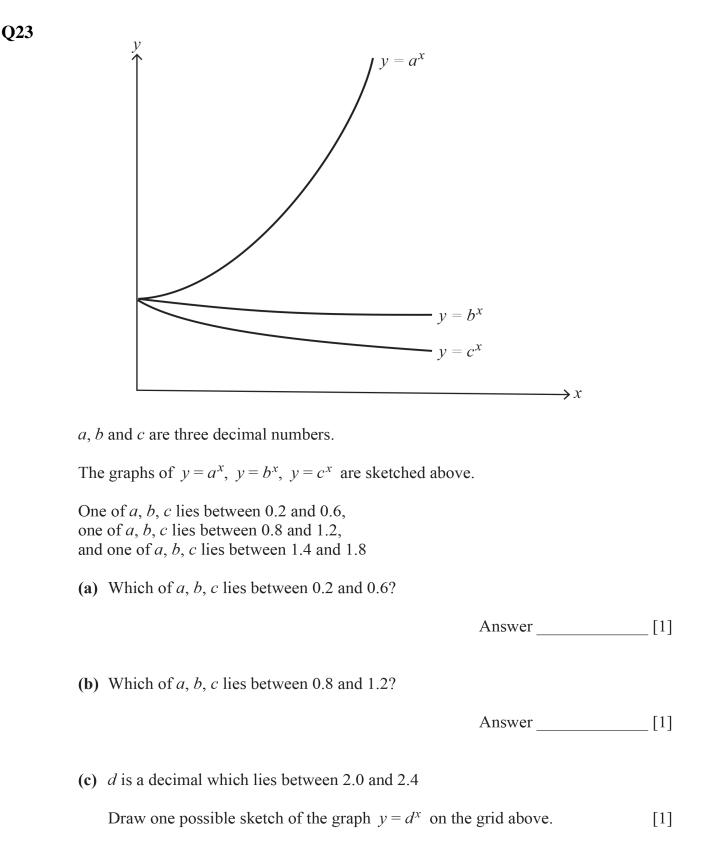
(c) Use your graph to predict after how many **months** the value of the share will be 10 times greater than the original purchase value.

Answer _____ months [2]

Sketches of $y = a^x$, $y = b^x$, $y = c^x$, $y = d^x$ are drawn above.

(a) a and b are numbers. One has the value 2 and the other has the value 3Which is which?

Answer *a* =_____, *b* =_____[1]


(b) Write down the value of c

Answer c =[1]

(c) Estimate the value of d

Answer d =[1]

Q22

1. (a)
$$5^2 + a^2 = 50$$
 so $a^2 = 25$ MA1

(b) Point (-1,7) grad radius -7 MA1

Grad tangent
$$\frac{1}{7}$$
 $y = \frac{1}{7}x + c$ MA1
 $7 = -\frac{1}{7} + c$
 $y = \frac{1}{7}x + \frac{50}{7}$ A1

2.

(a) (0, 0)	A1
(b) $x^2 + y^2 = 100$	A1
(c) $-\frac{3}{4}$	A1
(d) gradient $\frac{4}{3}$	MA1
$y = \frac{4}{3}x + c$ through (8,-6) $-6 = \frac{32}{3} + c$	MA1
$y = \frac{4}{3}x - \frac{50}{3}$	A1
(e) $x = 10, x = -10$	AlAl
(f) $(10, -\frac{10}{3}), (-10, -30)$	A1 A1

(a) $2^2 + 3^2 = 13$ so $a = \sqrt{13}$ M1 A1

(b) gradient of radius =
$$\frac{3}{2}$$
 MA1

gradient of tangent =
$$-\frac{2}{3}$$
 MA1

$$y = -\frac{2}{3}x + c; \ 3 = -\frac{4}{3} + c$$
 MA1

$$y = -\frac{2}{3}x + \frac{13}{3}$$
 A1

(c) other end of diameter is (-2, -3) MA1

$$y = -\frac{2}{3}x + c; -3 = \frac{4}{3} + c$$
 MA1

$$y = -\frac{2}{3}x - \frac{13}{3}$$
 A1

A3

(Alternative
$$y = -\frac{2}{3}x - \frac{13}{3}$$
 (using symmetry)

4. (a)
$$x^2 + 144 = 169$$

$$x = 5 \text{ or } -5$$
MA1

Gradient of radius is
$$\frac{12}{5}$$
 or $-\frac{12}{5}$ A1

(b) Gradient of tangents
$$-\frac{5}{12}$$
 or $\frac{5}{12}$ MA1

Equations
$$y = -\frac{5}{12}x + c$$
, using (5, 12) gives $c = \frac{169}{12}$
 $y = -\frac{5}{12}x + \frac{169}{12}$ MA1

and
$$y = \frac{5}{12}x + c$$
, using (-5, 12) gives $c = \frac{169}{12}$
 $y = \frac{5}{12}x + \frac{169}{12}$ MA1

St. Patrick's High School, Keady

(a) Grad radius =
$$-\frac{4}{3}$$
 MA1

Grad tangent =
$$\frac{3}{4}$$
 MA1

$$y = \frac{3}{4}x + c, 4 = \frac{3}{4} \times (-3) + c, c = \frac{23}{4}$$
MA1
$$y = \frac{3}{4}x + \frac{25}{4}, 4y = 3x + 25$$
MA1

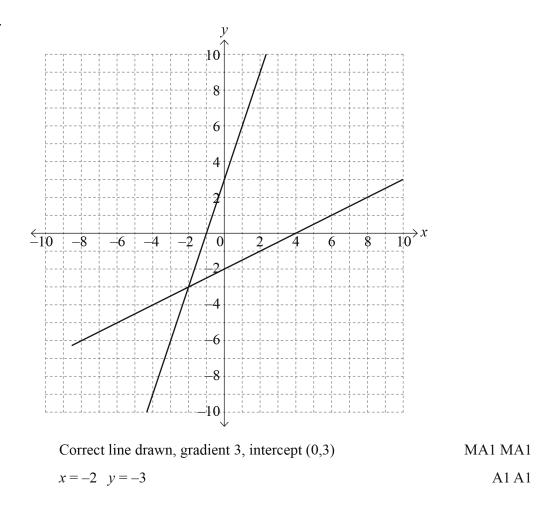
$$y = \frac{1}{4}x + \frac{1}{4}, 4y = 3x + 25$$
 MA

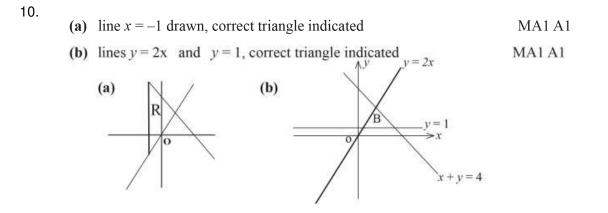
(b)
$$4(x^2+6) = 3x + 25$$

 $4x^2 + 24 = 3x + 25$
 $4x^2 - 3x - 1 = 0$
 $(4x + 1)(x - 1) = 0$
 $x = -\frac{1}{4}$ or 1
 $y = 6\frac{1}{16}$ or 7
 $\left(-\frac{1}{4}, 6\frac{1}{16}\right), (1, 7)$
MA1

6.

5.


(a)
$$-\frac{4}{3}$$
 A1
(b) $y = -\frac{4}{3}x$ A1
(c) $x^2 + \frac{16}{9}x^2 = 100$ MA1
 $\frac{25}{9}x^2 = 100$ MA1
 $x = 6$ or -6 MA1
(6, -8) or (-6, 8) MA1


St. Patrick's High School, Keady

Correct line drawn	M1 A1
x = 0.8 $y = -0.4$	A1 A1
Correct line drawn	M1 A1
x = 0.8 $y = -0.4$	A1 A1

8.	Line $x + y = 10$ passes through points (0, 10) and (10, 0)	M1 A1
	x = 3 and y = 7	A1 A1

7.

11.	(a)	-3 and -4	A1 A1
	(b)	plot all points correctly smooth curve through all the points	A1 A1
	(c)	line $y = x - 1$ correctly drawn answers from graph – 0.6 and 3.6	MA1 A1 A1

(a)	2, -1, -1 (A1 for correct values)	A2
(b)	Correct smooth curve drawn from $x = -2$ to $x = 4$ (A1 for all 7 points in the candidates's table plotted correctly)	A2

13.	All six points plotted correctly		
	Smooth curve drawn through all six points	A1	

14.	Drawing the graph of $y = 3 - 1.5x$	MA1
	x = -1.9	A1
	x = 1.6	A1

15.	(a)	7	A1
	(b)	points plotted correctly smooth curve through the points	A1 A1

$x^2 - x - 12 = 0 \Rightarrow 2x^2 - 2x - 24 (= 0)$	MA1
y = x + 1	MA1

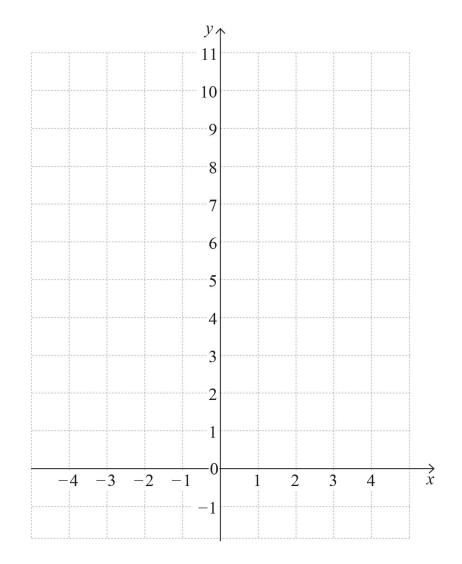
17.	(a)	Tangent drawn at $(2, -1)$	MA1
		Gradient from candidate's tangent, approximately 1	MA1
	(b)	Drawing $y = 4, -0.8$ and 3.8	M1 A1
	(c)	$x^2 - 4x - 1 = 0$ so $x^2 - 3x + 1 = x + 2$	M1
		drawing $y = x + 2$, -0.2 and 4.2 accept from -0.25 to -0.2 for negative value in all readings from their drawn lines, accept a little tolerance	MA1 A1

18.	(a) All seven points plotted correctly	A1
	Correct smooth curve drawn	A1
	(b) -0.6, 3.6	Al Al

19.	(a) -3 7	A1 A1
	(b) points plotted, smooth curve	A1 A1
	(c) readings from graph (two intercepts)	A1 A1
	(d) (i) line $y = x + 1$ drawn, readings from graph (two values for x)	MA1A1
	(ii) $x^2 + 2x - 4 = 0$	A1
	(e) $x^2 + 3x - 3 = -x + 3$	MA1
	y = -x + 3	A1

(a)	x	0.5	1	2	3	4	5	6
	у	6	3	1.5	1	0.75	0.6	0.5
(b)	all 5 va (A1 at l Accura (all 7 p	least 3 c	orrect) wn grap				x = 6	

A2


A2

St. Patrick's High School, Keady

1
1
1
1
1

(a) $a = 3, b = 2$	A1
(b) $c = 1$	A1
(c) fraction around $\frac{1}{2}$	A1

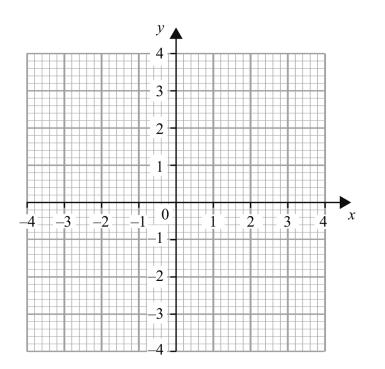
23.						
	(a)	С	A1			
	(b)	b	A1			
	(c)	suitable sketch similar to $y = a^x$ above $y = a^x$	A1			

(a) Draw the graph of $y = x^2 - 2x + 3$ for $-2 \le x \le 4$ on the grid above. [2]

St. Patrick's High School, Keady

(b) Use your graph to find the gradient of the curve when x = 2

Answer ____ [2]


(c) By drawing an appropriate line solve $2x^2 - 4x - 1 = 0$

Answer [2]

(d) What line would you draw on your graph to solve the equation $x^2 + 12x + 4 = 0$?

Answer [2]

Q2 (a) Draw the graph of $y = x^2 - x - 2$ for values of x from -2 to 3

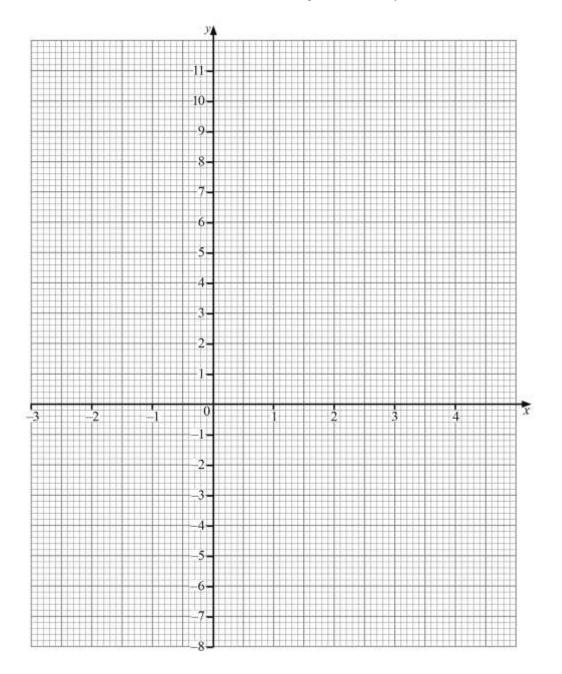
(b) (i) Write down the equation of the line of symmetry of the curve.

Answer _____ [1]

(ii) Hence calculate the minimum value of the curve.

Answer _____ [1]

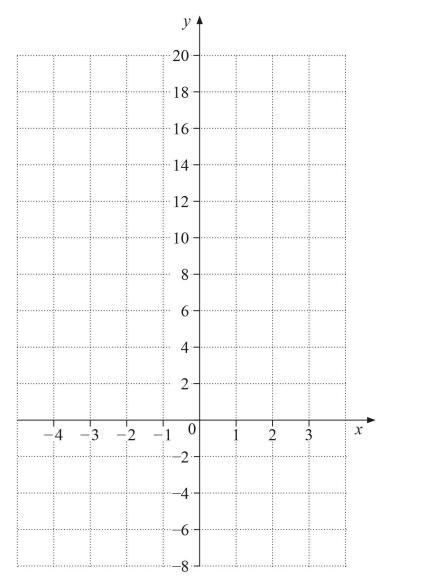
[2]


(a) Complete the table for $y = 2x^2 - 4x - 5$

Q3

x	-2	-1	0	1	2	3	4
У		1	-5	-7		1	
							[2]

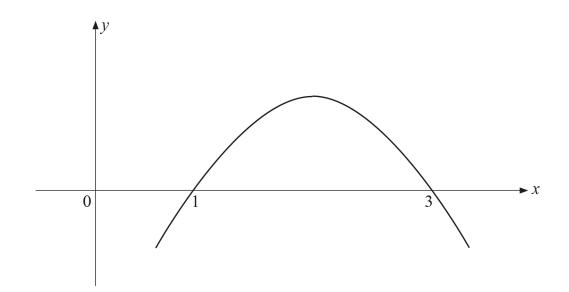
- (b) Draw the graph of $y = 2x^2 4x 5$ for x = -2 to x = 4 on the opposite page. [2]
- (c) Draw the line y = -2 and find the x values of the points of intersection.


Answer [2]

(a) Complete the table of values for $y = 3x^2 + 6x - 4$

x	-4	-3	-2	-1	0	1	2]
у	20	5	-4		-4	5	20	[1]

(b) Hence, draw the graph of $y = 3x^2 + 6x - 4$ on the grid below.


(c) Draw the line y = 12 on the grid. Write down the x values of the points of intersection with this line.

Answer _____, ____[2]

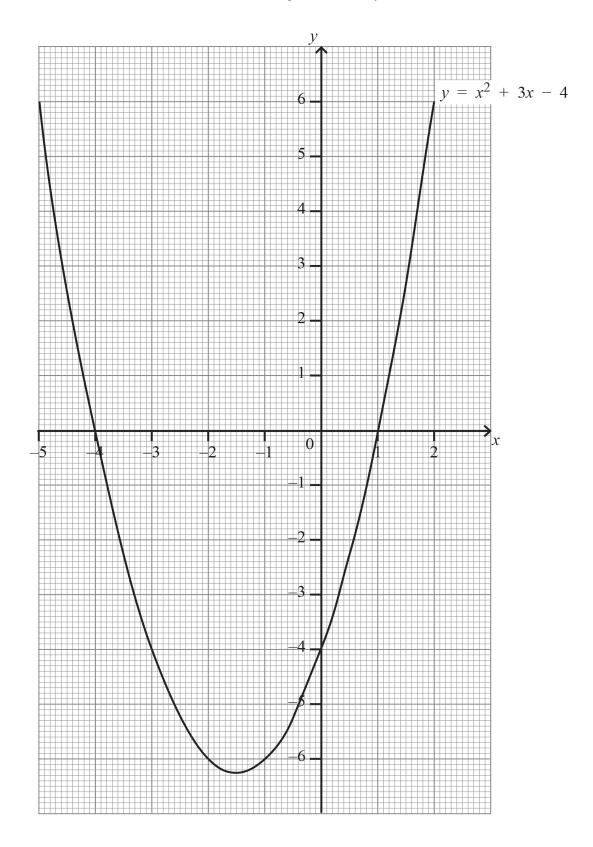
Q4

[2]

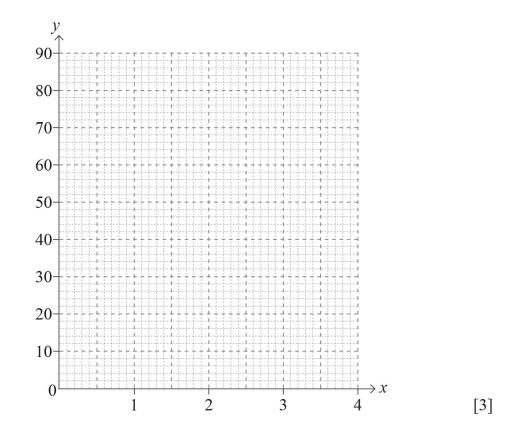
Q5

The sketch above shows part of the graph of the quadratic function $y = -x^2 + 4x - 3$

(a) Write down the coordinates of the point where the graph will cross the y-axis.


Answer _____ [1]

(b) Work out the coordinates of the highest point on the graph.


Answer [1]

St. Patrick's High School, Keady

(a) Draw the graph of $y = 3^x$ for values of x between 0 and 4

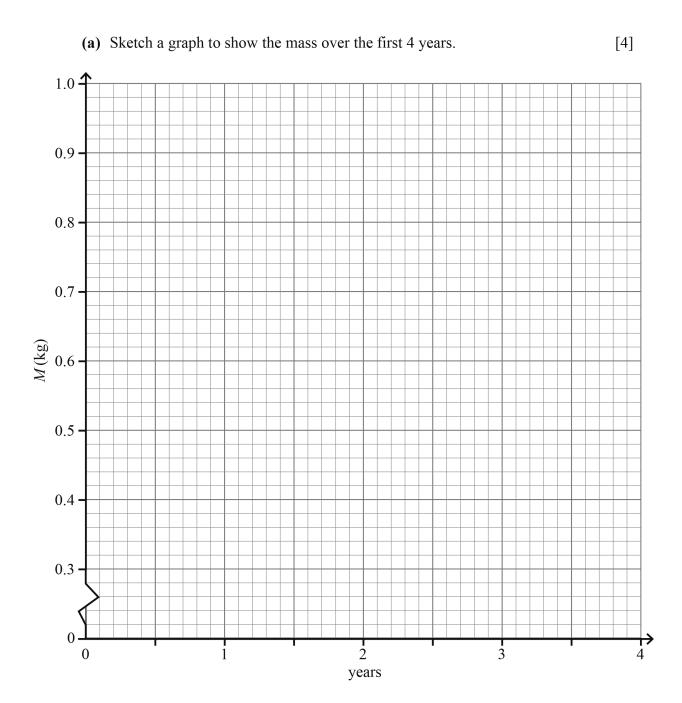
- (b) In the graph above, $\pounds y$ represents the value of one share in a company x years after purchase.
 - (i) What is the initial value of one share?

Answer £ [1]

(ii) Describe what is happening to the value of the share each year.

Q7

(c) By drawing a suitable line on the graph, estimate the instantaneous rate of increase in the value of the share when x = 3


Answer _____ £/year [2]

The mass Mkg of a decaying substance, x years after its manufacture, is given by

the formula

Q8

 $M = (0.8)^{x}$

- (b) By drawing appropriate lines on the graph, find
 - (i) after how many months the mass was 70% of its original value,

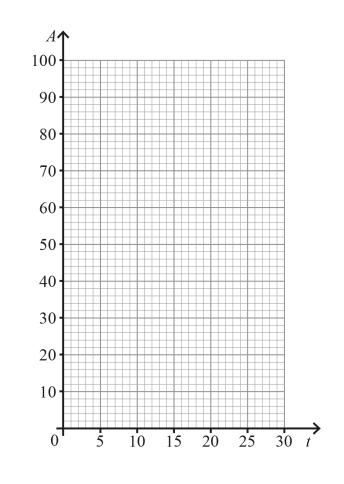
Answer _____ months [2]

(ii) the rate of decay when x = 3

Answer _____ kg/year [2]

A container of radioactive waste, with an initial radioactivity of 100, is buried deep underground.

It decays by 5% each year.


Q9

After *t* years, its radioactivity *A* is given by the equation

 $A = 100 \times 0.95^{t}$

(a) Complete the following table and use it to draw the graph of *A* against *t* on the grid below.

t	0	5	10	15	20	25	30
A							

[4]

(b) The half-life of a radioactive substance is defined as the time taken for the radioactivity of the material to decay to half its initial value.

Use your graph to estimate the expected half-life of this container of radioactive waste.

Answer _____ years [1]

(a) quadratic graph, quality	M1 A1
(b) tangent drawn, appropriate value	M1 A1
(c) $x^2 - 2x - \frac{1}{2} = 0$, so $x^2 - 2x + 3 = 3.5$	M1
y = 3.5, x from graph	Al
(d) $x^2 + 12x + 4 = 0$, so $x^2 - 2x + 3 = -14x - 1$	M1
y = -14x - 1	A1

2.	(a)	A completely correct quadratic graph drawn (apply [-1] for each error, e.g. incomplete graph, or a wrong point, no proper minimum point, not a smooth curve, etc.)	A2
	(b)	(i) $x = \frac{1}{2}$	A1
		(ii) $-2\frac{1}{4}$	A1

(a)	11, -5, 11	A2
(b)	correct points smooth curve	A1 A1
(c)	-0.6 and 2.6 (follow candidate's graph)	A1 A1

4.	(a)	-7	A1	
	(b)	Points plotted correctly	Al	
		Smooth curve	A1	
	(c)	Readings from graph	A1 A1	

(a) $(0, -3)$	A1
(b) (2, 1)	A1

6.	(a)	(i) Line $y = 2x - 1$ drawn Values from graph, around -2.3 and 1.3	MA1 MA1
		(ii) $x^2 + x - 3 = 0$	MA1
	(b)	$x^2 + 3x - 4 = 3$ or $y = 3$ drawn Values from graph, around -4.5 and 1.5	MA1 A1
	(c)	$x^{2} - x - 5 + 4x + 1 = 4x + 1$ or similar method y = 4x + 1	MA1 A1

7.	(a) using y values 1, 3, 9, 27, 81	MA2
	Smooth sketch of curve	A1
	(b) (i) 1	A1
	(ii) trebling	A1
	(c) tangent drawn at (3, 27)	MA1
	Values from drawn tangent	A1

- (a) points (0,1), (1,0.8), (2,0.64), (3,0.512), (4,0.4096) (rounded) Allow A2 for 4 points correct, A1 for 2 points correct Smooth curve
- (b) (i) reading from graph at 0.7, accurately
 - (ii) tangent drawn, read from graph

(a)	t	0	5	10	15	20	25	30		
	A	100	77	60	46	36	28	21		A2
Points plotted correctly Smooth curve through the points										A1 A1
(b)	13 to 1	14								A1